Limit of a Sequence 06

Calculus Level pending

Let a n a_n be a real-valued sequence such that a n > 0 \displaystyle{a_n > 0} for all n N n \geq N , for some N N N \in \mathbb{N} , and lim n a n + 1 a n = L \displaystyle{\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = L} , for some L L with 0 L < 1 0 \leq L < 1 . Which of the following is the STRONGEST true statement that can be made about n = 1 a n \displaystyle{\sum_{n=1}^{\infty}a_n} ?

n = 1 a n \sum_{n=1}^{\infty}a_n converges to a positive finite value. None of these are necessarily true. n = 1 a n \sum_{n=1}^{\infty}a_n diverges. n = 1 a n \sum_{n=1}^{\infty}a_n converges to a finite value.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Juncos
Sep 17, 2017

" n = 1 a n \displaystyle{\sum_{n=1}^{\infty}a_n} diverges"; By the ratio test, if lim n a n + 1 a n < 1 \displaystyle{\lim_{n \rightarrow \infty} \left|\frac{a_{n+1}}{a_n}\right| < 1} , then n = 1 a n \displaystyle{\sum_{n=1}^{\infty}a_n} converges.

" n = 1 a n \displaystyle{\sum_{n=1}^{\infty}a_n} converges to a positive finite value"; Let a 1 = 1 a_1 = -1 , and a n = 1 2 n \displaystyle{a_n = \frac{1}{2^n}} for all n 2 n \geq 2 . Then lim n a n + 1 a n = lim n 1 2 n + 1 1 2 n = lim n 1 2 = 1 2 < 1 \displaystyle{\lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = \lim_{n \rightarrow \infty} \frac{\frac{1}{2^{n+1}}}{\frac{1}{2^n}} = \lim_{n \rightarrow \infty} \frac{1}{2} = \frac{1}{2} < 1} , but n = 1 a n = 1 + n = 2 1 2 n = 1 + 1 2 = 1 2 \displaystyle{\sum_{n=1}^{\infty}a_n = -1 + \sum_{n=2}^{\infty}\frac{1}{2^n} = -1 + \frac{1}{2} = -\frac{1}{2}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...