Limit of a sequence

Calculus Level 5

Let us define k 0 = 0 k_0=0 and k n + 1 = k n + 1 + k n 2 k_{n+1}=k_n+\sqrt{1+k_n^2} .

Find the value of lim n ( k n 2 n ) \lim_{n \rightarrow \infty} \left(\dfrac{k_n}{2^n}\right)

Also try Limit of a sequence (2) and (3)

Assumptions and Source \textbf{Assumptions and Source}

  • n n is any non-negative integer.

  • This is a standard problem in most calculus textbooks for JEE (Advanced) \text{JEE (Advanced)} .


The answer is 0.6366.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Sep 8, 2014

Assume k 0 = c o t ( θ 0 ) { k }_{ 0 }=cot({ \theta }_{ 0 }) . So we have

k 1 = c o s e c ( θ 0 ) + c o t ( θ 0 ) = 1 + c o s ( θ 0 ) s i n ( θ 0 ) = 2 c o s 2 ( θ 0 2 ) 2 s i n ( θ 0 2 ) c o s ( θ 0 2 ) = c o t ( θ 0 2 ) { k }_{ 1 }=cosec({ \theta }_{ 0 })+cot({ \theta }_{ 0 })=\frac { 1+cos({ \theta }_{ 0 }) }{ sin({ \theta }_{ 0 }) } =\frac { 2{ cos }^{ 2 }(\frac { { \theta }_{ 0 } }{ 2 } ) }{ 2sin(\frac { { \theta }_{ 0 } }{ 2 } )cos(\frac { { \theta }_{ 0 } }{ 2 } ) } =cot(\frac { { \theta }_{ 0 } }{ 2 } )

Similarly we have :

k 2 = c o t θ 0 2 2 { k }_{ 2 }=cot\frac { { \theta }_{ 0 } }{ { 2 }^{ 2 } }

Continuing like this we have :

k n = c o t ( θ 0 2 n ) { k }_{ n }=cot(\frac { { \theta }_{ 0 } }{ { 2 }^{ n } } )

Now back to the limits we have :

lim n k n 2 n = lim n c o t ( θ 0 2 n ) 2 n = lim n 1 2 n t a n ( θ 0 2 n ) = 1 θ 0 \lim _{ n\rightarrow \infty }{ \frac { { k }_{ n } }{ { 2 }^{ n } } } =\lim _{ n\rightarrow \infty }{ \frac { cot(\frac { { \theta }_{ 0 } }{ { 2 }^{ n } } ) }{ { 2 }^{ n } } } =\lim _{ n\rightarrow \infty }{ \frac { 1 }{ { 2 }^{ n }tan(\frac { { \theta }_{ 0 } }{ { 2 }^{ n } } ) } } =\frac { 1 }{ { \theta }_{ 0 } }

In our given question c o t ( θ 0 ) = 0 cot({\theta}_{0})=0

θ 0 = π 2 \Rightarrow{\theta}_{0}=\frac{\pi}{2}

Our limit becomes L = 2 π L=\frac{2}{\pi}

Done the same way

Ayush Garg - 6 years, 9 months ago

@Ronak Agarwal what was the logic in assuming ksub0 as cot theta can u explain

Tejas Suresh - 6 years, 8 months ago

Log in to reply

The hint lies in that 1 + k n 2 \sqrt {1+{{k}_{n}}^{2}} .

Arif Ahmed - 6 years, 8 months ago

Just see the form of the recurrence putting k 0 = c o t ( θ ) {k}_{0}=cot(\theta) helps a lot as you can see in the question.

Ronak Agarwal - 6 years, 8 months ago

Log in to reply

We can also substitute k1 as tanα to get the same answer 2/π.

Mayank Jha - 4 years, 2 months ago

Great proof, yet I'm still a bit confused on that last limit evaluated to 1/theta. Can you please tell me how?

Sadat Shaik - 6 years, 9 months ago

Log in to reply

He calculated 1 θ 0 \frac 1 {\theta}_{0}\; using "l'Hôpital's rule": lim n 2 n tan ( 2 n θ 0 ) = \lim_{n \to \infty} \frac {2^{-n}}{\tan{(2^{-n} \theta}_{0})} = = lim n d d n 2 n d d n tan ( 2 n θ 0 ) = =\lim_{n \to \infty} \frac {\frac d {dn}2^{-n}}{\frac d {dn}\tan{(2^{-n} \theta}_{0})} = = lim n n 2 n 1 ln 2 n 2 n 1 θ 0 ln 2 c o s 2 ( 2 n θ 0 ) = =\lim_{n \to \infty} \frac {-n2^{-n-1}\ln2}{\frac {-n2^{-n-1}\theta_{0}\ln2}{{cos}^2(2^{-n}{\theta}_{0})}} = = c o s 2 ( 0 ) θ 0 = 1 θ 0 = \frac {{cos}^2(0)} {{\theta}_{0}} = \frac 1 {\theta}_{0}

Antonio Fanari - 6 years, 8 months ago

Ah! I put thera(0) as pi .

Aakash Khandelwal - 5 years, 7 months ago

Very Good Sum and Solution!!!!Did the same way :)(+1) obv...!!!!

rajdeep brahma - 3 years ago

but then there are infinite no of solutions as 3pi/2 is also a valid solution thus shouldn't the limit be non existant????

Ashish Mohanty - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...