Limit of a Sequence 02

Calculus Level pending

Let a n a_n be a real-valued sequence such that a n < a n + 1 < 1 a_n < a_{n+1} < 1 , for all n N n \geq N , for some N N N \in \mathbb{N} . Which of the following is the STRONGEST true statement that can be made about a n a_n ?

lim n a n \lim_{n \rightarrow \infty} a_n exists lim n a n \lim_{n \rightarrow \infty} a_n exists and lim n a n = 1 \lim_{n \rightarrow \infty} a_n = 1 None of these is necessarily true. lim n a n \lim_{n \rightarrow \infty} a_n exists and lim n a n < 1 \lim_{n \rightarrow \infty} a_n < 1 lim n a n \lim_{n \rightarrow \infty} a_n exists and lim n a n 1 \lim_{n \rightarrow \infty} a_n \leq 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Juncos
Sep 17, 2017

" lim n a n \displaystyle{\lim_{n \rightarrow \infty} a_n} exists"; This is true, but more can be said. If lim n a n = a > 1 \displaystyle{\lim_{n \rightarrow \infty} a_n} =a > 1 , then there is some ϵ > 0 \epsilon > 0 such that a ϵ 1 a- \epsilon \geq 1 ; i.e. for all n N n \geq N we have a n a ϵ \left| a_n - a\right| \geq \epsilon , meaning a n a_n does not converge to a a . Contradiction.

" lim n a n \displaystyle{\lim_{n \rightarrow \infty} a_n} exists and lim n a n < 1 \displaystyle{\lim_{n \rightarrow \infty} a_n} < 1 "; Let a n = n n + 1 \displaystyle{a_n = \frac{n}{n+1}} . Then a n < 1 \displaystyle{a_n < 1} for all n 0 n \geq 0 , but lim n a n = 1 \displaystyle{\lim_{n \rightarrow \infty} a_n = 1} .

" lim n a n \displaystyle{\lim_{n \rightarrow \infty} a_n} exists and lim n a n = 1 \displaystyle{\lim_{n \rightarrow \infty} a_n} = 1 "; Let a n = n 2 ( n + 1 ) \displaystyle{a_n = \frac{n}{2(n+1)}} . Then a n < 1 \displaystyle{a_n < 1} for all n 0 n \geq 0 , but lim n a n = 1 2 \displaystyle{\lim_{n \rightarrow \infty} a_n = \frac{1}{2}} .

"None of these is necessarily true."; If a sequence is increasing and bounded above, then it converges.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...