Limit of a sequence I

Calculus Level 3

lim n ( n 2 + 1 n 3 + 2 n + 1 + 1 5 n + cos ( 3 n + 4 ) n 2 + 1 ) = ? \large \lim _{n\to\infty }\left(\frac{n^2+1}{n^3+2n+1}+\frac{1}{5^n}+\frac{\cos (3n+4)}{n^2+1}\right)= \ ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First examines the limit in pieces

  • lim n ( 1 5 n ) = lim n ( 1 5 ) n = 0 \large \lim _{n\to\infty }\left(\frac{1}{5^n}\right)= \ \large \lim _{n\to\infty }\left(\frac{1}{5}\right)^n= \ 0

  • lim n ( n 2 + 1 n 3 + 2 n + 1 ) = lim n ( n 2 ( 1 + 1 / n 2 ) n 3 ( 1 + 2 / n 2 + 1 / n 3 ) ) = lim n ( ( 1 + 1 / n 2 ) ( 1 + 2 / n 2 + 1 / n 3 ) 1 / n ) = 0 \large \lim _{n\to\infty }\left(\frac{n^2+1}{n^3+2n+1}\right)= \large \lim _{n\to\infty }\left(\frac{n^2(1+1/n^2)}{n^3(1+2/n^2+1/n^3)}\right)= \ \large \lim _{n\to\infty }\left(\frac{(1+1/n^2)}{(1+2/n^2+1/n^3)}*1/n\right)= \ 0

  • lim n ( c o s ( 3 n + 4 ) n 2 + 1 ) = 0 \large \lim _{n\to\infty }\left(\frac{cos(3n+4)}{n^2+1}\right)= \ 0

* BECAUSE *

- 1 n 2 + 1 \frac{1}{n^2+1} c o s ( 3 n + 4 ) n 2 + 1 \frac{cos (3n+4)}{n^2+1} 1 n 2 + 1 \frac{1}{n^2+1}

and

  • lim n ( 1 n 2 + 1 ) = 0 \large \lim _{n\to\infty }\left(\frac{1}{n^2+1}\right)= \ 0
  • lim n ( 1 n 2 + 1 ) = 0 \large \lim _{n\to\infty }\left(-\frac{1}{n^2+1}\right)= \ 0

So

lim n ( n 2 + 1 n 3 + 2 n + 1 + 1 5 n + c o s ( 3 n + 4 ) n 2 + 1 ) = 0 + 0 + 0 = 0 \large \lim _{n\to\infty }\left(\frac{n^2+1}{n^3+2n+1}+\frac{1}{5^n}+\frac{cos (3n+4)}{n^2+1}\right)= \ 0+0+0 =0

Be careful of the small typo for the Squeeze Theorem where you imposed greater than instead of "less than".

Michael Huang - 4 years, 5 months ago

Log in to reply

I would like to apologize for my mistake, thank you very much for your comment

dimitris kouroupos - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...