Limit of a Sum

Calculus Level 4

lim x 1 x ( 1 3 + 1 x + 1 3 + 2 x + 1 3 + 3 x + + 1 3 + x x ) = ? \lim_{x\to\infty} \dfrac{1}{x} \left(\dfrac{1}{3+\dfrac{1}{x}}+\dfrac{1}{3+\dfrac{2}{x}}+\dfrac{1}{3+\dfrac{3}{x}}+\cdots+\dfrac{1}{3+\dfrac{x}{x}}\right) = \, ?

Give your answer rounded to 3 decimal places.

If you come to the conclusion that the limit diverges, enter 1.772.


The answer is 0.287.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex G
May 9, 2016

Relevant wiki: Riemann Sums

Rewriting the limit:

lim x 1 x ( n = 1 1 3 + n x ) \lim_{x\to\infty} \frac{1}{x} \left(\sum_{n=1}^{\infty} \dfrac{1}{3+\frac{n}{x}}\right)

Using the limit definition of the integral, this is a definite integral such that b a = 1 b-a=1 and f ( 1 x ) = 1 3 + 1 x f\left(\frac{1}{x}\right) = \dfrac{1}{3+\frac{1}{x}} . Therefore, f ( x ) = 1 3 + x f\left(x\right) = \dfrac{1}{3+x} , a = 0 a=0 and b = 1 b=1 .

0 1 1 3 + x d x \int_{0}^{1} \dfrac{1}{3+x} dx

ln 4 ln 3 \ln{4}-\ln{3}

0.287 \boxed{0.287}

Moderator note:

Simple standard approach.

Joel Yip
May 27, 2016

Quite simple.

lim x 1 x ( 1 3 + 1 x + 1 3 + 2 x + + 1 3 + x x ) = lim x ( 1 3 x + 1 + 1 3 x + 2 + + 1 4 x ) = lim x ( H 4 x H 3 x ) = lim x ( ( ln ( 4 x ) + γ ) ( ln ( 3 x ) + γ ) ) = lim x ( ln ( 4 x 3 x ) ) = ln ( 4 3 ) \displaystyle \lim _{ x\rightarrow \infty }{ \frac { 1 }{ x } \left( \frac { 1 }{ 3+\frac { 1 }{ x } } +\frac { 1 }{ 3+\frac { 2 }{ x } } +\cdots +\frac { 1 }{ 3+\frac { x }{ x } } \right) } =\lim _{ x\rightarrow \infty }{ \left( \frac { 1 }{ 3x+1 } +\frac { 1 }{ 3x+2 } +\cdots +\frac { 1 }{ 4x } \right) } \\ =\lim _{ x\rightarrow \infty } \left( { H }_{ 4x }-{ H }_{ 3x } \right) \\ =\lim _{ x\rightarrow \infty } \left( \left( \ln { \left( 4x \right) +\gamma } \right) -\left( \ln { \left( 3x \right) +\gamma } \right) \right) \\ =\lim _{ x\rightarrow \infty } \left( \ln { \left( \frac { 4x }{ 3x } \right) } \right) \\ =\ln { \left( \frac { 4 }{ 3 } \right) }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...