Limit of a Summation #1

Algebra Level 4

lim n i = 2 n i 2 + i 1 ( i 2 ) ! + ( i 1 ) ! + i ! + ( i + 1 ) ! = ? \large{\lim_{n \to \infty} \displaystyle \sum_{i=2}^{n} \frac{i^2 + i - 1}{(i-2)! + (i-1)! + i! + (i+1)!} = \ ?}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Ner
Jul 19, 2015

i 2 + i 1 ( i 2 ) ! + ( i 1 ) ! + i ! + ( i + 1 ) ! = i 2 + i 1 ( i 2 ) ! [ 1 + ( i 1 ) + ( i 1 ) ( i ) + ( i 1 ) ( i ) ( i + 1 ) ] = i 2 + i 1 ( i 2 ) ! [ 1 + i 1 + i 2 i + i 3 i 2 + i 2 1 ] = i 2 + i 1 ( i 2 ) ! [ i 3 + i 2 i ] = 1 ( i 2 ) ! i = i 1 i ! = 1 ( i 1 ) ! 1 i ! lim n i = 2 n i 2 + i 1 ( i 2 ) ! + ( i 1 ) ! + i ! + ( i + 1 ) ! = lim n i = 2 n 1 ( i 1 ) ! 1 i ! = 1 1 ! 1 2 ! + 1 2 ! 1 3 ! + 1 3 ! 1 4 ! + . . . = 1 \begin{aligned} \frac{i^2 + i - 1}{(i-2)! + (i-1)! + i! + (i+1)!} &= \frac{i^2 + i - 1}{(i-2)!\left[ 1+\left( i-1 \right) +\left( i-1 \right) \left( i \right) +\left( i-1 \right) \left( i \right) \left( i+1 \right) \right] }\\ &=\frac{i^2 + i - 1}{(i-2)!\left[ 1+i-1+{ i }^{ 2 }-i+{ i }^{ 3 }-{ i }^{ 2 }+{ i }^{ 2 }-1 \right] }\\&=\frac{i^2 + i - 1}{(i-2)!\left[ { i }^{ 3 }+{ i }^{ 2 }-i \right] }\\&=\frac{1}{(i-2)!i}\\&=\frac{i-1}{i!}\\&=\frac{1}{(i-1)!}-\frac{1}{i!}\\\lim_{n \to \infty} \displaystyle \sum_{i=2}^{n} \frac{i^2 + i - 1}{(i-2)! + (i-1)! + i! + (i+1)!} &=\lim_{n \to \infty} \displaystyle \sum_{i=2}^{n} \frac{1}{(i-1)!}-\frac{1}{i!}\\&=\frac { 1 }{ 1! } -\frac { 1 }{ 2! } +\frac { 1 }{ 2! } -\frac { 1 }{ 3! } +\frac { 1 }{ 3! } -\frac { 1 }{ 4! } +... \\&\Huge\color{#3D99F6}{=\boxed{1}}\end{aligned}

Same telescoping observation here. Nicely done.

Vishwak Srinivasan - 5 years, 10 months ago

Did the exact same !! (+1)

Akshat Sharda - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...