Limit of a vector sequence

Algebra Level 4

A sequence of vectors in the x y xy plane is described by the recurrence equation,

p k + 1 = p k + v k p_{k+1} = p_k + v_k

and

v k + 1 = 1 ϕ R v k v_{k+1} = \dfrac{1}{\phi} R v_k

with p 0 = ( 0 , 0 ) p_0 = (0,0) and v 0 = ( 1 , 1 ) v_0 = (1, 1) , and R R is the following rotation matrix,

R = [ cos π 2 sin π 2 sin π 2 cos π 2 ] = [ 0 1 1 0 ] R = \begin{bmatrix} \cos \frac{\pi}{2} && \sin \frac{\pi}{2} \\ - \sin \frac{\pi}{2} && \cos \frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 && 1 \\ -1 && 0 \end{bmatrix}

and ϕ \phi is the golden ratio, ϕ = 1 + 5 2 \phi = \dfrac{1 + \sqrt{5}}{2}

If lim k p k = ( a , b ) \displaystyle \lim_{k \to \infty} p_k = (a , b ) , then find a + 3 b a + 3 b


The answer is 2.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aareyan Manzoor
Jun 22, 2019

define K = 1 ϕ R K = \dfrac{1}{\phi} R . then [ p n + 1 v n + 1 ] = [ I I 0 K ] [ p n v n ] \begin{bmatrix} p_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} I && I \\ 0 && K \end{bmatrix}\begin{bmatrix} p_{n} \\ v_{n} \end{bmatrix} if we let A = [ I I 0 K ] A= \begin{bmatrix} I && I \\ 0 && K \end{bmatrix} , then the nth term in the sequence is [ p n v n ] = A n [ p 0 v 0 ] \begin{bmatrix} p_{n} \\ v_{n} \end{bmatrix}=A^n \begin{bmatrix} p_{0} \\ v_{0} \end{bmatrix}

lemma : A n = [ I I + K + K 2 + . . . + K n 1 0 K n ] A^n = \begin{bmatrix} I && I+K+K^2+...+K^{n-1} \\ 0 && K^n \end{bmatrix} proof (by induction): the base case with n=1 is true. we have A n + 1 = A n A = [ I I + K + K 2 + . . . + K n 1 0 K n ] [ I I 0 K ] = [ I I + K + K 2 + . . . + K n 1 + K n 0 K n + 1 ] A^{n+1}=A^n A =\begin{bmatrix} I && I+K+K^2+...+K^{n-1} \\ 0 && K^n \end{bmatrix} \begin{bmatrix} I && I \\ 0 && K \end{bmatrix} = \begin{bmatrix} I && I+K+K^2+...+K^{n-1}+K^n\\ 0 && K^{n+1} \end{bmatrix} hence proved.

note lim n K n = 0 \lim_{n\to \infty} K^n = 0 . Using this we have [ p v ] = [ I I + K + K 2 + . . . 0 0 ] [ p 0 v 0 ] p = p 0 + ( I + K + K 2 + . . . ) v 0 \begin{bmatrix} p_{\infty} \\ v_{\infty} \end{bmatrix} = \begin{bmatrix} I && I+K+K^2+... \\ 0 && 0 \end{bmatrix} \begin{bmatrix} p_{0} \\ v_{0} \end{bmatrix}\to p_\infty = p_0+( I+K+K^2+...)v_0 notice that R n R^n is periodic, as 4 90 degree rotation is the same as not rotating(i.e identity matrix). infact the powers of n starting at n=1 goes R , I , R , I , R . . . . R,-I,-R,I,R.... plugging this in we have p = p 0 + ( I + 1 ϕ R 1 ϕ 2 I 1 ϕ 3 R + 1 ϕ 4 I + . . . . . ) v 0 = p 0 + 1 1 + 1 ϕ 2 ( I + R ϕ ) v 0 p_\infty = p_0+\left(I+\dfrac{1}{\phi}R-\dfrac{1}{\phi^2}I-\dfrac{1}{\phi^3}R+\dfrac{1}{\phi^4}I+.....\right)v_0=p_0 +\dfrac{1}{1+\dfrac{1}{\phi^2}} \left(I+\dfrac{R}{\phi}\right) v_0 note that geometric series was used. the rest is just plugging in, giving the vector 1 1 + 1 ϕ 2 [ 1 + 1 ϕ 1 1 ϕ ] \boxed{\dfrac{1}{1+\dfrac{1}{\phi^2}} \begin{bmatrix} 1+\dfrac{1}{\phi} \\ 1-\dfrac{1}{\phi} \end{bmatrix}}

Using complex numbers you find that:

p0 = 0

p1 = 1+i

p2 = (1+i) + i/phi (1+i)

p3 = (1+i) + i/phi (1+i) + (i/phi)² (1+i)

pn = (1+i) (1 + i/phi + (i/phi)² +...+ (i/phi)^(n-1))

Which is easy to solve in the limit. Only then a and b are switched, so in that sense the result is not quite the same. It is probably due to the fact that your rotation is clockwise and i rotates counter clockwise. So basically, that's what I got wrong.

Kris Hauchecorne - 1 year, 11 months ago
Théo Leblanc
Aug 16, 2019

Note to the author:

Generally rotation matrices are written like that:

R ( θ ) = [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] R(\theta)=\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}

Indeed your matrix is R ( π 2 ) R(-\dfrac{\pi}{2}) but the angle you used is π 2 \dfrac{\pi}{2} .

My solution:

Let w n = R n v 0 = ϕ n v n w_n=R^n v_0=\phi^n v_n .

Using that fact that R = R ( π 2 ) R=R(-\dfrac{\pi}{2}) we see that:

w 4 n = ( 1 , 1 ) w 4 n + 1 = ( 1 , 1 ) w 4 n + 2 = ( 1 , 1 ) w 4 n + 3 = ( 1 , 1 ) w_{4n}=(1,1)\\ w_{4n+1}=(1,-1)\\ w_{4n+2}=(-1,-1)\\ w_{4n+3}=(-1,1) .

With the relation defining ( p n ) (p_n) we have:

lim n + p n = p = ( a , b ) = n = 0 + 1 ϕ n w n \underset{n\to +\infty}{\lim} p_n =p=(a,b)=\displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^n}w_n

Therefore:

a = n = 0 + 1 ϕ 4 n + n = 0 + 1 ϕ 4 n + 1 n = 0 + 1 ϕ 4 n + 2 n = 0 + 1 ϕ 4 n + 2 and, b = n = 0 + 1 ϕ 4 n n = 0 + 1 ϕ 4 n + 1 n = 0 + 1 ϕ 4 n + 2 + n = 0 + 1 ϕ 4 n + 2 a=\displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n}} + \displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n+1}} -\displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n+2}} -\displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n+2}} \\ \text{and,} \\ b=\displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n}} -\displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n+1}} -\displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n+2}} + \displaystyle\sum_{n=0}^{+\infty} \dfrac{1}{\phi^{4n+2}}

Using the fact that for all integers k 0 , m k\neq0,\ m , if x < 1 |x|<1 then

n = 0 + x k n + m = x m n = 0 + ( x k ) n = x m 1 x k \displaystyle\sum_{n=0}^{+\infty} x^{kn+m}=x^m\displaystyle\sum_{n=0}^{+\infty} (x^k)^n=\dfrac{x^m}{1-x^k}

We get,

a = 1 + ϕ 1 ϕ 2 ϕ 3 1 ϕ 4 = ϕ 4 + ϕ 3 ϕ 2 ϕ ϕ 4 1 and, b = 1 ϕ 1 ϕ 2 + ϕ 3 1 ϕ 4 = ϕ 4 ϕ 3 ϕ 2 + ϕ ϕ 4 1 \begin{aligned} a & =\dfrac{ 1+\phi^{-1}-\phi^{-2}-\phi^{-3}}{1-\phi^{-4}}\\ & =\dfrac{\phi^4+\phi^3-\phi^2-\phi}{\phi^4-1} \end{aligned} \\ \text{and,} \\ \begin{aligned} b & =\dfrac{ 1-\phi^{-1}-\phi^{-2}+\phi^{-3}}{1-\phi^{-4}}\\ & = \dfrac{\phi^4-\phi^3-\phi^2+\phi}{\phi^4-1} \end{aligned}

Hence,

a + 3 b = 4 ϕ 4 2 ϕ 3 4 ϕ 2 + 2 ϕ ϕ 4 1 a+3b=\dfrac{4\phi^4-2\phi^3-4\phi^2+2\phi}{\phi^4-1}

Using the fact that ϕ 2 = ϕ + 1 \phi^2=\phi+1 and so ϕ 3 = 2 ϕ + 1 \phi^3=2\phi+1 as well as ϕ 4 = 3 ϕ + 2 \phi^4=3\phi+2

a + 3 b = 12 ϕ + 8 4 ϕ 2 4 ϕ 4 + 2 ϕ 3 ϕ + 1 = 6 ϕ + 2 3 ϕ + 1 = 2 \begin{aligned} a+3b & =\dfrac{12\phi+8-4\phi-2-4\phi-4+2\phi}{ 3\phi+1}\\ & =\dfrac{6\phi+2}{3\phi+1}\\ & =\boxed{2} \end{aligned}

K T
Jun 27, 2019

R 2 = I R^2=-I ( 1 ϕ R ) 2 = 1 ϕ 2 I \Rightarrow (\frac{1}{\phi}R)^2 = -\frac{1}{\phi^2} I v 2 k = ( 1 ϕ 2 ) k v 0 and v 2 k + 1 = ( 1 ϕ 2 ) k v 1 \Rightarrow v_{2k}= (-\frac{1}{\phi^{2}})^kv_{0} \text{ and } v_{2k+1}= (-\frac{1}{\phi^{2}})^kv_{1} v 2 k + v 2 k + 1 = ( 1 ϕ 2 ) k ( v 0 + v 1 ) \Rightarrow v_{2k} + v_{2k+1} = (-\frac{1}{\phi^{2}})^k(v_{0} + v_{1})

p 2 n + 1 = k = 0 n v k + k = 0 n v k + 1 p_{2n+1}=\sum_{k=0}^n v_k + \sum_{k=0}^n v_{k+1}

Now using the fact that for r < 1 |r|<1 , we can write 1 + r + r 2 + . . . = 1 1 r 1+r+r^2+... =\frac{1}{1-r} , and putting r = 1 ϕ 2 r=-\frac{1}{\phi^2}

lim n p 2 n + 1 = 1 1 + 1 ϕ 2 ( v 0 , v 1 ) = 1 1 + 1 ϕ 2 ( 1 + 1 ϕ , 1 1 ϕ ) \lim_{n \to \infty} p_{2n+1} =\frac{1}{1+\frac{1}{\phi^2}}(v_0, v_1)=\frac{1}{1+\frac{1}{\phi^2}}(1+\frac{1}{\phi}, 1-\frac{1}{\phi})

lim n p 2 n + 1 \lim_{n \to \infty} p_{2n+1} = 5 + 3 5 + 5 ( 5 + 3 5 + 1 , 5 1 5 + 1 ) = \frac{\sqrt{5}+3}{\sqrt{5}+5} (\frac{\sqrt{5}+3}{\sqrt{5}+1}, \frac{\sqrt{5}-1}{\sqrt{5}+1}) = ( 3 5 + 7 3 5 + 5 , 5 + 1 3 5 + 5 ) =( \frac{3\sqrt{5}+7}{3\sqrt{5}+5} , \frac{\sqrt{5}+1}{3\sqrt{5}+5})

a + 3 b = 6 5 + 10 3 5 + 5 = 2 a+3b=\frac{6\sqrt{5}+10}{3\sqrt{5}+5}=\boxed{2}

Similarly, prove that lim n p 2 n \lim_{n \to \infty}p_{2n} converges to the same value so that the given limit exists.

For the last step, remarking that p 2 n + 1 p 2 n = v 2 n n + 0 p_{2n+1}-p_{2n} = v_{2n} \underset{n\to+\infty}{\longrightarrow}0 is enough to prove that ( p 2 n ) (p_{2n}) converges to the same limit as ( p 2 n + 1 ) (p_{2n+1}) which we know to be convergent. It is true because R R is orthogonal and 1 / ϕ < 1 |1/\phi|<1 , therefore v n = 1 ϕ n R n v 0 n + 0 v_n=\dfrac{1}{\phi^n}R^n v_0 \underset{n\to+\infty}{\longrightarrow}0 .

Théo Leblanc - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...