This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
When x > 1 and x = k π for integer k , 0 ≤ cos 2 x < 1 , and when n → ∞ , x n → ∞ . Thus, ( cos 2 x ) x n → 0 .
When 0 ≤ x < 1 , 0 < cos 2 x ≤ 1 , and and when n → ∞ , x n → 0 . Thus, ( cos 2 x ) x n → 1 .
When x = k π for k ∈ Z + , cos 2 x = 1 . Thus, ( cos 2 x ) x n → 1
Finally, when x = 1 , cos 2 x = cos 2 1 , and x n = 1 for every n , so ( cos 2 x ) x n → cos 2 1
The set S = { 1 } ∪ { k π ∣ k ∈ Z + } is countably infinite, so it has measure 0 , and when x ∈ S , ( cos 2 x ) x n is finite, so S can be ignored in the integration.
Our limit now becomes ∫ 0 1 1 d x + ∫ 1 ∞ 0 d x = 1