Limit of a weird Integral

Calculus Level 3

Evaluate

lim n 0 ( cos 2 x ) x n d x \large \displaystyle \lim_{n \rightarrow \infty} \int_{0}^{\infty} (\cos^2x)^{ \large x^n} dx

Maybe do this next: When Does The Integral Converge?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pedro Cardoso
Aug 7, 2019

When x > 1 x > 1 and x k π x \neq k\pi for integer k k , 0 cos 2 x < 1 0 \leq \cos^2x < 1 , and when n n \rightarrow \infty , x n x^n \rightarrow \infty . Thus, ( cos 2 x ) x n 0 (\cos^2x)^{ \normalsize x^{\normalsize n}}\rightarrow 0 .

When 0 x < 1 0 \leq x < 1 , 0 < cos 2 x 1 0 < \cos^2x \leq 1 , and and when n n \rightarrow \infty , x n 0 x^n \rightarrow 0 . Thus, ( cos 2 x ) x n 1 (\cos^2x)^{ \normalsize x^{\normalsize n}}\rightarrow 1 .

When x = k π x = k\pi for k Z + k \in \mathbb{Z}^{+} , cos 2 x = 1 \cos^2x = 1 . Thus, ( cos 2 x ) x n 1 (\cos^2x)^{ \normalsize x^{\normalsize n}}\rightarrow 1

Finally, when x = 1 x = 1 , cos 2 x = cos 2 1 \cos^2x=\cos^21 , and x n = 1 x^{n} = 1 for every n n , so ( cos 2 x ) x n cos 2 1 (\cos^2x)^{ \normalsize x^{\normalsize n}}\rightarrow \cos^21

The set S = { 1 } { k π k Z + } S = \{1\}\cup\{k\pi \, | \, k \in \mathbb{Z}^{+}\} is countably infinite, so it has measure 0 0 , and when x S x \in S , ( cos 2 x ) x n (\cos^2x)^{ \normalsize x^{n}} is finite, so S S can be ignored in the integration.

Our limit now becomes 0 1 1 d x + 1 0 d x = 1 \displaystyle \int_{0}^{1} 1 dx + \int_{1}^{\infty} 0 dx\ = \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...