Limit of an Integral including inverse tangent

Calculus Level 3

lim n 0 n x 2017 tan 1 x n 2018 d x = ? \large \lim_{n \to \infty} \int_0^n \frac {x^{2017}\tan^{-1}x}{n^{2018}} \, dx = \, ?


Further Challenges: Evaluate without using L'Hôpital's rule

π 4038 \frac{\pi}{4038} π 4036 \frac{\pi}{4036} π 4034 \frac{\pi}{4034} π 2017 \frac{\pi}{2017}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 25, 2018

L = lim n 0 n x 2017 tan 1 x n 2018 d x By integration by parts = lim n x 2018 tan 1 x 2018 n 2018 0 n 1 2018 n 2018 0 n x 2018 1 + x 2 d x Let x = tan θ d x = sec 2 θ d θ = π 4036 lim n 1 2018 n 2018 0 tan 1 n tan 2018 θ d θ = π 4036 lim n I 2018 2018 n 2018 \begin{aligned} L & = \lim_{n \to \infty} \int_0^n \frac {x^{2017}\tan^{-1}x}{n^{2018}} dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = \lim_{n \to \infty} \frac {x^{2018}\tan^{-1}x}{2018n^{2018}} \bigg|_0^n - \frac 1{2018n^{2018}}\color{#3D99F6}\int_0^n \frac {x^{2018}}{1+x^2} dx & \small \color{#3D99F6} \text{Let }x = \tan \theta \implies dx = \sec^2 \theta \ d\theta \\ & = \frac \pi {4036} - \lim_{n \to \infty} \frac 1{2018n^{2018}}\color{#3D99F6}\int_0^{\tan^{-1}n} \tan^{2018} \theta\ d\theta \\ & = \frac \pi {4036} - \lim_{n \to \infty} \frac {\color{#3D99F6}I_{2018}}{2018n^{2018}} \end{aligned}

We can solve the integral I 2018 = 0 tan 1 n tan 2018 θ d θ \displaystyle I_{2018} = \int_0^{\tan^{-1}n} \tan^{2018} \theta\ d\theta using the reduction formula tan m x = tan m 1 x m 1 tan m 2 x d x \displaystyle \int \tan^m x = \frac {\tan^{m-1}x}{m-1} - \int \tan^{m-2} x\ dx or I m = tan m 1 x m 1 I m 2 I_m = \dfrac {\tan^{m-1}x}{m-1} - I_{m-2} . Therefore,

I 2018 = tan 2017 θ 2017 I 2016 = tan 2017 θ 2017 tan 2015 θ 2015 + I 2014 = k = 1 1009 ( 1 ) k + 1 tan 2 k 1 θ 2 k 1 I 0 Note that I 0 = d θ = θ + C \begin{aligned} I_{2018} & = \frac {\tan^{2017}\theta }{2017} - I_{2016} \\ & = \frac {\tan^{2017}\theta}{2017} - \frac {\tan^{2015}\theta}{2015} + I_{2014} \\ & = \sum_{k=1}^{1009} \frac {(-1)^{k+1}\tan^{2k-1}\theta}{2k-1} - \color{#3D99F6} I_0 & \small \color{#3D99F6} \text{Note that }I_0 = \int d\theta = \theta + C \end{aligned}

lim n I 2018 2018 n 2018 0 n = lim n 1 2018 n 2018 k = 1 1009 ( 1 ) k + 1 tan 2 k 1 θ 2 k 1 θ 2018 n 2018 0 tan 1 n = lim n 1 2018 n 2018 k = 1 1009 ( 1 ) k + 1 n 2 k 1 2 k 1 tan 1 n 2018 n 2018 = lim n 1 2018 k = 1 1009 ( 1 ) k + 1 ( 2 k 1 ) n 2 k 1 π 2 2018 n 2018 = 0 \begin{aligned} \implies \lim_{n \to \infty} \frac {I_{2018}}{2018n^{2018}} \bigg|_0^n & = \lim_{n \to \infty} \frac 1{2018n^{2018}} \sum_{k=1}^{1009} \frac {(-1)^{k+1}\tan^{2k-1} \theta} {2k-1} - \frac {\color{#3D99F6}\theta}{2018n^{2018}} \bigg|_0^{\tan^{-1} n} \\ & = \lim_{n \to \infty} \frac 1{2018n^{2018}} \sum_{k=1}^{1009} \frac {(-1)^{k+1}n^{2k-1}}{2k-1} - \frac {\tan^{-1} n}{2018n^{2018}} \\ & = \lim_{n \to \infty} \frac 1{2018} \sum_{k=1}^{1009} \frac {(-1)^{k+1}}{(2k-1)n^{2k-1}} - \frac {\frac \pi 2}{2018n^{2018}} \\ & = 0 \end{aligned}

Therefore, L = π 4036 lim n I 2018 2018 n 2018 0 = π 4036 \displaystyle L = \frac \pi {4036} - \cancel{\lim_{n \to \infty} \frac {I_{2018}}{2018n^{2018}}}^0 = \boxed{\dfrac \pi {4036}} .

latex master!!

Mohammad Khaza - 3 years, 4 months ago

Log in to reply

Yes, I like the app a lot.

Chew-Seong Cheong - 3 years, 4 months ago

You could make your life a lot easier by noting that 1 n 2018 0 n x 2018 1 + x 2 d x < 1 n 2018 0 n x 2018 x 2 d x = n 2017 2017 n 2018 = 1 2017 n , \frac1{n^{2018}} \int_0^n \frac{x^{2018}}{1+x^2} \, dx < \frac1{n^{2018}} \int_0^n \frac{x^{2018}}{x^2} \, dx = \frac{n^{2017}}{2017n^{2018}} = \frac1{2017n}, which goes to 0 0 as n . n \to \infty.

Patrick Corn - 3 years, 4 months ago

Log in to reply

Thanks for solution. I did not notice this.

Chew-Seong Cheong - 3 years, 4 months ago

Too good! Awesome solution.

Rishabh Jain - 3 years, 4 months ago

My original solution relied on finding a recurrence formula before evaluating the integral, it started exactly like yours! Great job sir.

Bernard Peh - 3 years, 4 months ago

You can get rid of the series part by using the trigonometric representation of the Beta function and then using the identity Γ ( t ) Γ ( 1 t ) = π csc ( t π ) \Gamma(t)\Gamma(1-t) = \pi \csc(t\pi) for I 2018 I_{2018} . That is,

0 π 2 tan 2018 θ d θ = B ( 2018 + 1 2 , 2018 + 1 2 ) = Γ ( 2019 2 ) Γ ( 2018 2 ) = π csc ( π ( 2019 ) 2 ) \int_{0}^{\frac {\pi}{2}} \tan^{2018} \theta d\theta = \Beta(\frac {2018+1}{2}, \frac {-2018+1}{2}) = \Gamma(\frac {2019}{2}) \Gamma (\frac {-2018}{2}) = \pi \cdot \csc(\frac {\pi(2019)}{2})

N. Aadhaar Murty - 2 months, 3 weeks ago
Leonel Castillo
Jan 24, 2018

The easiest solution is via L'hopital's rule. The denominator, n 2018 n^{2018} , diverges and we can prove the numerator diverges because for big enough x x , x 2017 arctan ( x ) > 1 x^{2017} \arctan(x) > 1 so divergence follows by comparison with 0 n d x \int_0^n dx . So we have a \frac{\infty}{\infty} case and if we apply L'hopital's we find this limit is equal to lim n n 2017 arctan ( n ) 2018 n 2017 = lim n arctan ( n ) 2018 = π 2 × 2018 = π 4036 \lim_{n \to \infty} \frac{n^{2017} \arctan(n)}{2018n^{2017}} = \lim_{n \to \infty} \frac{\arctan(n)}{2018} = \frac{\pi}{2 \times 2018} = \frac{\pi}{4036} .

Other ways to reach this result are by using the Laurent series for arctan ( x ) \arctan(x) which tells us that arctan ( x ) = π 2 + O ( 1 x ) \arctan(x) = \frac{\pi}{2} + O(\frac{1}{x}) or by using the squeeze theorem starting from the inequality π 2 1 x < arctan ( x ) < π 2 \frac{\pi}{2} - \frac{1}{x} < \arctan(x) < \frac{\pi}{2} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...