n → ∞ lim ∫ 0 n n 2 0 1 8 x 2 0 1 7 tan − 1 x d x = ?
Further Challenges: Evaluate without using L'Hôpital's rule
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
latex master!!
You could make your life a lot easier by noting that n 2 0 1 8 1 ∫ 0 n 1 + x 2 x 2 0 1 8 d x < n 2 0 1 8 1 ∫ 0 n x 2 x 2 0 1 8 d x = 2 0 1 7 n 2 0 1 8 n 2 0 1 7 = 2 0 1 7 n 1 , which goes to 0 as n → ∞ .
Log in to reply
Thanks for solution. I did not notice this.
Too good! Awesome solution.
My original solution relied on finding a recurrence formula before evaluating the integral, it started exactly like yours! Great job sir.
You can get rid of the series part by using the trigonometric representation of the Beta function and then using the identity Γ ( t ) Γ ( 1 − t ) = π csc ( t π ) for I 2 0 1 8 . That is,
∫ 0 2 π tan 2 0 1 8 θ d θ = B ( 2 2 0 1 8 + 1 , 2 − 2 0 1 8 + 1 ) = Γ ( 2 2 0 1 9 ) Γ ( 2 − 2 0 1 8 ) = π ⋅ csc ( 2 π ( 2 0 1 9 ) )
The easiest solution is via L'hopital's rule. The denominator, n 2 0 1 8 , diverges and we can prove the numerator diverges because for big enough x , x 2 0 1 7 arctan ( x ) > 1 so divergence follows by comparison with ∫ 0 n d x . So we have a ∞ ∞ case and if we apply L'hopital's we find this limit is equal to lim n → ∞ 2 0 1 8 n 2 0 1 7 n 2 0 1 7 arctan ( n ) = lim n → ∞ 2 0 1 8 arctan ( n ) = 2 × 2 0 1 8 π = 4 0 3 6 π .
Other ways to reach this result are by using the Laurent series for arctan ( x ) which tells us that arctan ( x ) = 2 π + O ( x 1 ) or by using the squeeze theorem starting from the inequality 2 π − x 1 < arctan ( x ) < 2 π .
Problem Loading...
Note Loading...
Set Loading...
L = n → ∞ lim ∫ 0 n n 2 0 1 8 x 2 0 1 7 tan − 1 x d x = n → ∞ lim 2 0 1 8 n 2 0 1 8 x 2 0 1 8 tan − 1 x ∣ ∣ ∣ ∣ 0 n − 2 0 1 8 n 2 0 1 8 1 ∫ 0 n 1 + x 2 x 2 0 1 8 d x = 4 0 3 6 π − n → ∞ lim 2 0 1 8 n 2 0 1 8 1 ∫ 0 tan − 1 n tan 2 0 1 8 θ d θ = 4 0 3 6 π − n → ∞ lim 2 0 1 8 n 2 0 1 8 I 2 0 1 8 By integration by parts Let x = tan θ ⟹ d x = sec 2 θ d θ
We can solve the integral I 2 0 1 8 = ∫ 0 tan − 1 n tan 2 0 1 8 θ d θ using the reduction formula ∫ tan m x = m − 1 tan m − 1 x − ∫ tan m − 2 x d x or I m = m − 1 tan m − 1 x − I m − 2 . Therefore,
I 2 0 1 8 = 2 0 1 7 tan 2 0 1 7 θ − I 2 0 1 6 = 2 0 1 7 tan 2 0 1 7 θ − 2 0 1 5 tan 2 0 1 5 θ + I 2 0 1 4 = k = 1 ∑ 1 0 0 9 2 k − 1 ( − 1 ) k + 1 tan 2 k − 1 θ − I 0 Note that I 0 = ∫ d θ = θ + C
⟹ n → ∞ lim 2 0 1 8 n 2 0 1 8 I 2 0 1 8 ∣ ∣ ∣ ∣ 0 n = n → ∞ lim 2 0 1 8 n 2 0 1 8 1 k = 1 ∑ 1 0 0 9 2 k − 1 ( − 1 ) k + 1 tan 2 k − 1 θ − 2 0 1 8 n 2 0 1 8 θ ∣ ∣ ∣ ∣ 0 tan − 1 n = n → ∞ lim 2 0 1 8 n 2 0 1 8 1 k = 1 ∑ 1 0 0 9 2 k − 1 ( − 1 ) k + 1 n 2 k − 1 − 2 0 1 8 n 2 0 1 8 tan − 1 n = n → ∞ lim 2 0 1 8 1 k = 1 ∑ 1 0 0 9 ( 2 k − 1 ) n 2 k − 1 ( − 1 ) k + 1 − 2 0 1 8 n 2 0 1 8 2 π = 0
Therefore, L = 4 0 3 6 π − n → ∞ lim 2 0 1 8 n 2 0 1 8 I 2 0 1 8 0 = 4 0 3 6 π .