Limit of an integral sum

Calculus Level 5

Given that I n = 0 1 x n e x d x I_n=\int^1_0x^ne^x\,dx

Find the value of lim n ( k = 1 n I k + 1 k ) \lim_{n\to\infty}\left(\sum_{k=1}^{n}\frac{I_{k+1}}{k}\right)


The answer is 1.71828.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Nicolae Sapoval
Dec 14, 2013

First of all, lets find the recurrent relation for the I n I_n . Integrating by parts we get I n = 0 1 x n e x d x = e 0 1 n x n 1 e x d x = e n I n 1 . I_n=\int^1_0x^ne^x\,dx=e-\int^1_0nx^{n-1}e^x\,dx=e-nI_{n-1}. This is equivalent to I n + n I n 1 = e I_n+nI_{n-1}=e . The last equality implies I n + 1 + ( n + 1 ) I n = I n + n I n 1 I_{n+1}+(n+1)I_n=I_n+nI_{n-1} or I n + 1 = n ( I n 1 I n ) I_{n+1}=n(I_{n-1}-I_n) . Now lets analyze our sum. We obtain k = 1 n I k + 1 k = k = 2 n ( I k 1 I k ) + I 2 = I 1 I n + I 2 . \sum_{k=1}^n\frac{I_{k+1}}{k}=\sum_{k=2}^n(I_{k-1}-I_k)+I_2=I_1-I_n+I_2.

Now we must find to which number does I n I_n tend. It's easy to notice that 0 0 1 x n e x d x e 0 1 x n d x 0 I n e n + 1 . 0\leq \int^1_0x^ne^x\,dx \leq e\int^1_0x^n\,dx\Leftrightarrow 0\leq I_n\leq \frac{e}{n+1}.

So we obtain that lim n I n = 0 \lim_{n\to\infty}I_n=0

To finish our proof, we integrate by parts to calculate that lim n ( I 1 + I 2 I n ) = I 1 + I 2 = e 1 . \lim_{n\to\infty} \left(I_1+I_2-I_n\right)=I_1+I_2=\boxed{e-1}.

integrate (x/y+y/x)dy/dx,x from 1 to 4 and y from 1 to 2

ayesha naseer - 7 years, 6 months ago

Log in to reply

answer me pls

ayesha naseer - 7 years, 6 months ago
Haroun Meghaichi
Dec 21, 2013

We know that : k = 1 x n n = ln ( 1 x ) . \sum_{k=1}^{\infty} \frac{x^n}{n}=-\ln(1-x). Therefore : L = k = 1 I k k + 1 = 0 1 x e x k = 1 x k k d x L=\sum_{k=1}^{\infty} \frac{I_{k}}{k+1} =\int\limits_0^1 x e^x \sum_{k=1}^{\infty} \frac{x^k }{k} \ \mathrm{d}x L . = 0 1 x e x ln ( 1 x ) d x . L.=- \int\limits_{0}^1 x e^x \ln(1-x)\ \mathrm{d}x. The interchange sum-integral is justified by the positiveness of all summands (monotone convergence theorem). L = [ e x ( ( x 1 ) ln ( x 1 ) + 1 ] 0 1 = 1 e . L=\bigg[-e^x ((x-1)\ln(x-1)+1\bigg]_0^1=1-e.

Moderator note:

Considering that all of the terms are positive, the final answer should be positive, IE e 1 e - 1 .

There is likely a mistake made at the end in evaluating the expression.

I also did the same. The answer comes 1-e & not e-1...

A Brilliant Member - 7 years, 5 months ago
A L
Dec 15, 2013

0 1 x e x k 1 x k k d x = 0 1 x e x log ( 1 x ) d x \displaystyle \int_0^1 x e^x \sum_{k \ge 1}\frac{x^k}{k}dx= -\int_0^1 x e^x \log(1-x)dx

= 0 1 ( 1 t ) e 1 t log ( t ) d t = 0 1 t e 1 t log ( t ) d t 0 1 e 1 t log ( t ) d t . \displaystyle = -\int_0^1 (1-t) e^{1-t} \log(t)dt=\int_0^1 t e^{1-t} \log(t)dt-\int_0^1 e^{1-t} \log(t)dt.

Now, consider the integral

I ( n ) = e 0 1 t n e t d t = IBP n ! ( e 1 ) n e = Γ ( n + 1 ) ( e 1 ) n e \displaystyle I(n)=e \int_0^1 t^n e^{-t} dt \stackrel{\text{IBP}}{=}n!(e-1)-ne=\Gamma(n+1)(e-1)-ne

I ( n ) = Γ ( n + 1 ) ( e 1 ) e = e 0 1 t n e t log ( t ) d t . \displaystyle I'(n)=\Gamma'(n+1)(e-1)-e= e \int_0^1 t^n e^{-t} \log(t) dt.

Thus our answer is equal to

I ( 1 ) I ( 0 ) = ( Γ ( 2 ) Γ ( 1 ) ) ( e 1 ) = ( 1 γ + γ ) ( e 1 ) = e 1. \displaystyle I'(1)-I'(0)=(\Gamma'(2)-\Gamma'(1))(e-1)=(1-\gamma+\gamma)(e-1)=e-1.

Note that Γ ( x ) \Gamma(x) is the Gamma function, and its derivative can be found (quite easily, especially for integer x x ) using the digamma function.

A L - 7 years, 5 months ago

Log in to reply

but gamma integral is for 0 to infinity only so please explain how you used it here

dp dp - 7 years, 2 months ago

Woah! Quite an unusual and clever solution.

Shivin Srivastava - 7 years, 5 months ago
Pebrudal Zanu
Dec 22, 2013

We can modification I n I_n as double Integral I n = 0 1 0 1 x n + 1 y n 1 e x d x d y I_n=\int_0^1 \! \int_0^1 x^{n+1}y^{n-1}e^x\,dx\,dy

Since, 0 < 0 1 0 1 x 2 e x d x d y < 1 0<\int_0^1 \! \int_0^1 x^{2}e^x\,dx\,dy<1 , so I n I_n as geometric progression.

So, lim x I k + 1 k = 0 1 0 1 x 2 e x 1 x y = 1.718 \displaystyle \lim_{x \to \infty} \frac{I_{k+1}}{k}=\int_0^1 \! \int_0^1 \frac {x^2e^x}{1-xy}=\fbox{1.718}

Revision,

x n + 1 y n 1 x^{n+1}y^{n-1} as geometric progression, not I n I_n

pebrudal zanu - 7 years, 5 months ago
Milun Moghe
Dec 27, 2013

the limit can be written as{ - ∫x* e^x* log(1-x)dx }from x=0 to x=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...