Limit of cubes and natural numbers

Level 1

lim n n 2 ( 1 + 2 + 3 + 4 + 5 + . . . + n ) 2 ( 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + . . . + n 3 ) = ? \large \lim_{n\to\infty}\dfrac{n^2(1+2+3+4+5 +...+ n)}{2(1^3+2^3+3^3+4^3+5^3 +...+ n^3)}=?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 17, 2018

L = lim n n 2 ( 1 + 2 + 3 + + n ) 2 ( 1 3 + 2 3 + 3 3 + + n 3 ) = lim n n 2 k = 1 n k 2 k = 1 n k 3 = lim n n 2 n ( n + 1 ) 2 2 ( n ( n + 1 ) 2 ) 2 = lim n n 2 n ( n + 1 ) = lim n n 2 n 2 + n Divide up and down by n 2 = lim n 1 1 + 1 n = 1 \begin{aligned} L & = \lim_{n \to \infty} \frac {n^2(1+2+3+\cdots+n)}{2(1^3+2^3+3^3+\cdots +n^3)} \\ & = \lim_{n \to \infty} \frac {n^2 \sum_{k=1}^n k}{2\sum_{k=1}^n k^3} \\ & = \lim_{n \to \infty} \frac {n^2\cdot \frac {n(n+1)}2}{2\left(\frac {n(n+1)}2\right)^2} \\ & = \lim_{n \to \infty} \frac {n^2}{n(n+1)} \\ & = \lim_{n \to \infty} \frac {n^2}{n^2+n} & \small \color{#3D99F6} \text{Divide up and down by }n^2 \\ & = \lim_{n \to \infty} \frac 1{1+\frac 1n} \\ & = \boxed{1} \end{aligned}

Edwin Gray
Feb 26, 2019

The fraction may be rewritten as: n^2[(n/2)(n + 1)]/2[((n^2)/4)(n + 1)^2] =(n^2 + n)/(n^2 + 2n + 1). Dividing numerator and denominator by n^2, (1 + 1/n)/(1 + 2/n + 1/n^2). Lim as n app inf. = 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...