Limit of Exponents and Sinusoidal Functions

Calculus Level 4

Evaluate the following limit:

L = lim x 0 ( sin ( x ) x ) 1 1 cos ( x ) \large L = \lim_{x\to 0} \left(\dfrac{\sin(x)}{x}\right)^{\frac{1}{1-\cos(x)}}

Find the value of 1000 L \lfloor 1000L \rfloor .


The answer is 716.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ariel Gershon
Oct 14, 2017

To find the answer, I will use the following Lemma, which I will leave as an exercise:

Lemma: If lim x 0 f ( x ) = L \displaystyle\lim_{x\to 0} f(x) = L and n > 0 n > 0 , then lim x 0 ( 1 + x n f ( x ) ) x n = e L \displaystyle\lim_{x\to 0} (1 + x^n f(x))^{x^{-n}} = e^L .

We can rewrite the limit we need to find as follows:

lim x 0 [ ( 1 + x 2 ( sin ( x ) x x 3 ) ) x 2 ] x 2 1 cos ( x ) \displaystyle\lim_{x\to 0} \left[\left(1 + x^2\left(\dfrac{\sin(x)-x}{x^3}\right)\right)^{x^{-2}}\right]^{\dfrac{x^2}{1-\cos(x)}}

We can apply the Lemma with n = 2 n=2 and f ( x ) = sin ( x ) x x 3 f(x) = \dfrac{\sin(x)-x}{x^3} . In this case lim x 0 f ( x ) = 1 6 \lim_{x\to 0} f(x) = -\dfrac{1}{6} (which follows from the Taylor series of sin ( x ) \sin(x) ). The Lemma gives us:

lim x 0 ( 1 + x 2 ( sin ( x ) x x 3 ) ) x 2 = e 1 / 6 \displaystyle\lim_{x\to 0}\left(1 + x^2\left(\dfrac{\sin(x)-x}{x^3}\right)\right)^{x^{-2}} = e^{-1/6}

Meanwhile, we have lim x 0 x 2 1 cos ( x ) = 2 \displaystyle\lim_{x\to 0}\dfrac{x^2}{1-\cos(x)} = 2 (this also follows from Taylor series). Hence the limit is equal to ( e 1 / 6 ) 2 = e 1 / 3 \left(e^{-1/6}\right)^2 = \boxed{e^{-1/3}} .

Chew-Seong Cheong
Oct 17, 2017

L = lim x 0 ( sin x x ) 1 1 cos x A 1 case (see note). = exp ( lim x 0 1 1 cos x ( sin x x 1 ) ) where exp ( x ) = e x = exp ( lim x 0 sin x x x ( 1 cos x ) ) A 0/0 case, L’H o ˆ pital’s rule applies. = exp ( lim x 0 cos x 1 1 cos x + x sin x ) Again, a 0/0 case = exp ( lim x 0 sin x sin x + sin x + x cos x ) Again, a 0/0 case = exp ( lim x 0 cos x 2 cos x + cos x x sin x ) Differentiate up and down w.r.t. x = e 1 3 = 1 e 3 0.716531 \begin{aligned} L & = \lim_{x \to 0} \left(\frac {\sin x}x \right)^{\frac 1{1-\cos x}} & \small \color{#3D99F6} \text{A }1^\infty \text{ case (see note).} \\ & = \exp \left(\lim_{x \to 0} \frac 1{1-\cos x}\left(\frac {\sin x}x-1\right)\right) & \small \color{#3D99F6} \text{where }\exp(x) = e^x \\ & = \exp \left(\lim_{x \to 0} \frac {\sin x - x}{x(1-\cos x)} \right) & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \exp \left(\lim_{x \to 0} \frac {\cos x - 1}{1-\cos x + x\sin x} \right) & \small \color{#3D99F6} \text{Again, a 0/0 case} \\ & = \exp \left(\lim_{x \to 0} \frac {-\sin x}{\sin x + \sin x + x\cos x} \right) & \small \color{#3D99F6} \text{Again, a 0/0 case} \\ & = \exp \left(\lim_{x \to 0} \frac {-\cos x}{2\cos x + \cos x - x\sin x } \right) & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = e^{-\frac 13} = \frac 1{\sqrt[3]e} \approx 0.716531 \end{aligned}

1000 L = 716 \implies \lfloor 1000L\rfloor = \boxed{716}


Note: If lim x a ( f ( x ) g ( x ) ) h ( x ) = 1 \displaystyle \lim_{x \to a} \left(\frac {f(x)}{g(x)} \right)^{h(x)} = 1^\infty , then lim x a ( f ( x ) g ( x ) ) h ( x ) = exp ( h ( x ) ( f ( x ) g ( x ) 1 ) ) \displaystyle \lim_{x \to a} \left(\frac {f(x)}{g(x)} \right)^{h(x)} = \exp \left( h(x) \left(\frac {f(x)}{g(x)} - 1\right) \right) . See reference (2nd method) .

Thanks! I didn't know about this method before.

Ariel Gershon - 3 years, 7 months ago
Akhil D
Dec 3, 2017

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...