Limit of f ( x ) f ( x ) \frac{f^{\prime}(x)}{f(x)}

Calculus Level 5

Find the value of lim x f ( x ) f ( x ) \displaystyle \lim \limits_{x \to \infty} \frac{f^{\prime}(x)}{f(x)} where f ( x ) = π 4 π 4 e x tan t d t f(x)= \displaystyle \int_{-\frac π4}^{\frac π4} e^{x\tan t} \, dt .

0.5 0.5 e e 1 1 2 2 0 0 π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 7, 2021

The substitutions u = tan t u = \tan t and v = 1 u v = 1-u give

f ( x ) = 1 1 e u x 1 + u 2 d u = e x 1 1 e ( 1 u ) x 1 + u 2 d u = e x 0 2 e x v g ( v ) d v > 0 f ( x ) = 1 1 u e u x 1 + u 2 d u = e x 0 2 e x v h ( v ) d v \begin{aligned} f(x) & = \; \int_{-1}^1 \frac{e^{ux}}{1 + u^2}\,du \; = \; e^x \int_{-1}^1 \frac{e^{-(1-u)x}}{1+u^2}\,du \; = \; e^x \int_0^2 e^{-xv}g(v)\,dv \; > \; 0 \\ f'(x) & = \; \int_{-1}^1 \frac{ue^{ux}}{1 + u^2}\,du \; = \; e^x\int_0^2 e^{-xv}h(v)\,dv\end{aligned} where g ( v ) = 1 1 + ( 1 v ) 2 h ( v ) = 1 v 1 + ( 1 v ) 2 g(v) \; = \; \frac{1}{1 + (1-v)^2} \hspace{2cm} h(v) \; = \; \frac{1-v}{1 + (1-v)^2} Using Watson's Lemma, we deduce that e x f ( x ) g ( 0 ) Γ ( 1 ) x 1 = 1 2 x e x f ( x ) h ( 0 ) Γ ( 1 ) x 1 = 1 2 x x e^{-x}f(x) \; \sim \; g(0)\Gamma(1)x^{-1} \; = \; \frac{1}{2x} \hspace{1cm} e^{-x}f'(x) \; \sim \; h(0)\Gamma(1)x^{-1} \; =\; \frac{1} {2x} \hspace{2cm} x \to \infty and hence

lim x f ( x ) f ( x ) = 1 \lim_{x \to \infty} \frac{f'(x)}{f(x)} \; =\; \boxed{1}

Whoa! Thanks for the solution! I’m curious tho if this problem can be solved in an easier way...

Inquisitor Math - 3 months, 1 week ago

Log in to reply

Well, it is not difficult to obtain Watson's Lemma in this special case. Since g g is continuously differentiable on [ 0 , 2 ] [0,2] , we can find K > 0 K > 0 such that g ( u ) g ( 0 ) K u |g(u) - g(0)| \le Ku for 0 u 2 0 \le u \le 2 . Thus e x f ( x ) g ( 0 ) x ( 1 e 2 x ) = 0 2 ( g ( u ) g ( 0 ) ) e x u d u 0 2 g ( u ) g ( 0 ) e x u d u K 0 2 u e x u d u = K ( 2 x e 2 x + 1 x 0 2 e x u d u ) K ( 2 x e 2 x + 1 x 2 ( 1 e 2 x ) ) \begin{aligned} \left| e^{-x}f(x) - \frac{g(0)}{x}(1 - e^{-2x})\right| & =\; \left|\int_0^2 (g(u) - g(0))e^{-xu}\,du\right| \; \le \; \int_0^2 |g(u) - g(0)|e^{-xu}\,du \\ &\le \; K\int_0^2 u e^{-xu}\,du \; = \; K\left(-\frac{2}{x}e^{-2x} + \frac{1}{x}\int_0^2 e^{-xu}\,du\right) \; \le \; K\left(-\frac{2}{x}e^{-2x} + \frac{1}{x^2}(1 - e^{-2x})\right) \end{aligned} and so certainly lim x x e x f ( x ) = g ( 0 ) \lim_{x \to \infty} xe^{-x}f(x) = g(0) . SImilarly for f ( x ) f'(x) .

Mark Hennings - 3 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...