Find the value of x → ∞ lim f ( x ) f ′ ( x ) where f ( x ) = ∫ − 4 π 4 π e x tan t d t .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Whoa! Thanks for the solution! I’m curious tho if this problem can be solved in an easier way...
Log in to reply
Well, it is not difficult to obtain Watson's Lemma in this special case. Since g is continuously differentiable on [ 0 , 2 ] , we can find K > 0 such that ∣ g ( u ) − g ( 0 ) ∣ ≤ K u for 0 ≤ u ≤ 2 . Thus ∣ ∣ ∣ ∣ e − x f ( x ) − x g ( 0 ) ( 1 − e − 2 x ) ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∫ 0 2 ( g ( u ) − g ( 0 ) ) e − x u d u ∣ ∣ ∣ ∣ ≤ ∫ 0 2 ∣ g ( u ) − g ( 0 ) ∣ e − x u d u ≤ K ∫ 0 2 u e − x u d u = K ( − x 2 e − 2 x + x 1 ∫ 0 2 e − x u d u ) ≤ K ( − x 2 e − 2 x + x 2 1 ( 1 − e − 2 x ) ) and so certainly lim x → ∞ x e − x f ( x ) = g ( 0 ) . SImilarly for f ′ ( x ) .
Problem Loading...
Note Loading...
Set Loading...
The substitutions u = tan t and v = 1 − u give
f ( x ) f ′ ( x ) = ∫ − 1 1 1 + u 2 e u x d u = e x ∫ − 1 1 1 + u 2 e − ( 1 − u ) x d u = e x ∫ 0 2 e − x v g ( v ) d v > 0 = ∫ − 1 1 1 + u 2 u e u x d u = e x ∫ 0 2 e − x v h ( v ) d v where g ( v ) = 1 + ( 1 − v ) 2 1 h ( v ) = 1 + ( 1 − v ) 2 1 − v Using Watson's Lemma, we deduce that e − x f ( x ) ∼ g ( 0 ) Γ ( 1 ) x − 1 = 2 x 1 e − x f ′ ( x ) ∼ h ( 0 ) Γ ( 1 ) x − 1 = 2 x 1 x → ∞ and hence
x → ∞ lim f ( x ) f ′ ( x ) = 1