Limit of Function

Calculus Level 2

lim n n 2 ( a n a n + 1 ) \large \lim_{n \to \infty} n^2 \left(\sqrt[n]{a}-\sqrt[n+1]{a}\right)

Find the limit above for a > 0 a > 0 .

e a e^a \infty ln a \ln a

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

The entire limit can be written as :-

lim n a 1 n a 1 n + 1 1 n 2 \displaystyle \lim_{n\to\infty} \frac{a^{\frac{1}{n}} - a^{\frac{1}{n+1}}}{\frac{1}{n^{2}}} ( 0 0 f o r m ) \frac{0}{0} form)

So By L'Hospital Rule :-

lim n ( ln ( a ) ) . ( 1 ( n + 1 ) 2 1 n 2 ) 2 n 3 \displaystyle \lim_{n\to\infty} (\ln(a)).\frac{(\frac{1}{(n+1)^{2}} - \frac{1}{n^2})}{\frac{-2}{n^3}}

(Note that I have made the approximation that a 1 n \large a^{\frac{1}{n}} tends to 1 as n tends to \large \infty )

So rearranging we see that it is :-

lim n ( ln ( a ) ) . ( 2 n + 1 ) . n 3 2 n 2 ( n + 1 ) 2 \displaystyle \lim_{n\to\infty} (\ln(a)).\frac{(2n+1).n^{3}}{2n^{2}(n+1)^{2}} .

which tends to 1 1 .

Richard Desper
Sep 5, 2019

Let f ( x ) = a 1 / x f(x) = -a^{1/x} . We are considering the behavior of the product n 2 ( f ( n + 1 ) f ( n ) ) n^2(f(n+1)-f(n)) as n n \rightarrow \infty .

Apply the mean value theorem to ( f ( n + 1 ) f ( n ) ) (f(n+1)-f(n)) : for every value of n n , there exists a value x n ( n , n + 1 ) x_n \in (n,n+1) such that f ( x n ) = ( f ( n + 1 ) f ( n ) ) f'(x_n) = (f(n+1)-f(n)) . (I'm implicitly using the fact that the length of the interval is 1 to ignore the denominator of the MVT.)

Note that since f ( x ) = exp ( ln a x ) f(x) = -\exp(\frac{\ln a}{x}) , f ( x ) = exp ( ln a x ) ( ln a x 2 ) = f ( x ) ln a x 2 f'(x) = - \exp(\frac{\ln a}{x}) (-\frac{\ln a}{x^2}) = -f(x) \frac{\ln a}{x^2} .

Thus we are interested in the limit lim n n 2 f ( x n ) = lim n n 2 ( f ( x n ) ) ln a x n 2 \lim_{n \rightarrow \infty} n^2 f'(x_n) = \lim_{n \rightarrow \infty} n^2 (-f(x_n)) \frac{\ln a}{x_n^2} .

Now it should be clear that lim n f ( x n ) = 1 \lim_{n \rightarrow \infty} f(x_n) = -1 , since lim x ( 1 / x ) = 0 \lim_{x \rightarrow \infty} (1/x) = 0 . Thus lim n f ( x n ) = 1. \lim_{n \rightarrow \infty} -f(x_n) = 1.

Also, note that, since n < x n < n + 1 n < x_n < n+1 for all n n , then lim n n x n = 1 \lim_{n \rightarrow \infty} \frac{n}{x_n} = 1 .

Thus lim n n 2 ( f ( x n ) ) ln a x n 2 = lim n n 2 ln a x n 2 = ln a \lim_{n \rightarrow \infty} n^2 (-f(x_n)) \frac{\ln a}{x_n^2} = \lim_{n \rightarrow \infty} \frac{n^2 \ln a}{x_n^2} = \ln a .

Aareyan Manzoor
Sep 4, 2019

make a change of variable n 1 n n\to \dfrac{1}{n} , to have lim n 0 1 n 2 ( a n a n n + 1 ) = lim n 0 1 n 2 [ exp ( n ln ( a ) ) exp ( n n + 1 ln ( a ) ) ] = lim n 0 1 n 2 [ exp ( n ln ( a ) ) exp ( n ln ( a ) n 2 ln ( a ) + O ( n 3 ) ) ] = lim n 0 1 n 2 [ 1 + n ln ( a ) + n 2 ln 2 ( a ) 2 + O ( n 3 ) ( 1 + ( n ln ( a ) n 2 ln ( a ) ) + ( n ln ( a ) n 2 ln ( a ) ) 2 2 + O ( n 3 ) ) ] = lim n 0 1 n 2 [ n 2 ln ( a ) + O ( n 3 ) ] = ln ( a ) \lim_{n\to 0} \dfrac{1}{n^2} \left( a^{n}-a^{\frac{n}{n+1}} \right)=\lim_{n\to 0} \dfrac{1}{n^2} \left[ \exp( n \ln(a)) -\exp\left(\frac{n}{n+1}\ln(a)\right) \right]=\lim_{n\to 0} \dfrac{1}{n^2} \left[ \exp( n \ln(a)) -\exp\left(n\ln(a)-n^2\ln(a)+O(n^3)\right) \right] \\ =\lim_{n\to 0} \dfrac{1}{n^2} \left[ 1+n\ln(a)+\dfrac{n^2 \ln^2 (a)}{2}+O(n^3) -\left(1+ \left(n\ln(a)-n^2\ln(a)\right)+\dfrac{\left(n\ln(a)-n^2\ln(a)\right)^2}{2}+O(n^3)\right)\right] \\ =\lim_{n\to 0} \dfrac{1}{n^2} \left[ n^2\ln(a) +O(n^3)\right] = \boxed{\ln(a)}

Your limit is now n tends to 0, not infinity. Otherwise the last expression would mean another thing.

คลุง แจ็ค - 1 year, 9 months ago

Log in to reply

oh yeah sorry typoed. thanks for pointing it out!

Aareyan Manzoor - 1 year, 9 months ago
Edward Christian
Sep 21, 2019

We just have to suppose a = 1 a=1 , then The Equation = 0 \text{The Equation}=0 , ln a = 0 \text{ln }a=0 . So the answer is ln a \text{ln }a .

Chew-Seong Cheong
Sep 16, 2019

L = lim n n 2 ( a n a n + 1 ) = lim n a 1 n a 1 n + 1 1 n 2 Let x = 1 n = lim x 0 a x a x 1 + x x 2 A 0/0 case, L’H o ˆ pital’s rule applies = lim x 0 a x ln a a x 1 + x ln a ( 1 + x ) 2 2 x After d d x up and down, a 0/0 case again = lim x 0 a x ln 2 a a x 1 + x ln 2 a ( 1 + x ) 4 + 2 a x 1 + x ln a ( 1 + x ) 3 2 d d x up and down again = ln a \begin{aligned} L & = \lim_{n \to \infty} n^2 \left(\sqrt[n] a - \sqrt[n+1] a\right) \\ & = \lim_{n \to \infty} \frac {a^\frac 1n - a^\frac 1{n+1}}{\frac 1{n^2}} & \small \color{#3D99F6} \text{Let }x = \frac 1n \\ & = \lim_{x \to 0} \frac {a^x - a^\frac x{1+x}}{x^2} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies} \\ & = \lim_{x \to 0} \frac {a^x \ln a - \frac {a^\frac x{1+x}\ln a}{(1+x)^2}}{2x} & \small \color{#3D99F6} \text{After }\frac d{dx} \text{up and down, a 0/0 case again} \\ & = \lim_{x \to 0} \frac {a^x \ln^2 a - \frac {a^\frac x{1+x}\ln^2 a}{(1+x)^4} + \frac {2 a^\frac x{1+x}\ln a}{(1+x)^3}}2 & \small \color{#3D99F6} \frac d{dx} \text{up and down again} \\ & = \boxed{\ln a} \end{aligned}


Reference: L'Hôpital's rule

Uros Stojkovic
Sep 13, 2019

Since 1 n 1 n + 1 = 1 n ( n + 1 ) \frac{1}{n}-\frac{1}{n+1} = \frac{1}{n(n+1)} , we have: n 2 ( a 1 n a 1 n + 1 ) = a 1 n + 1 + 1 n ( n + 1 ) a 1 n + 1 1 n ( n + 1 ) n 2 n ( n + 1 ) n^2\left ( a^{\frac{1}{n}}-a^{\frac{1}{n+1}} \right ) = {\color{#0C6AC7}\frac{{}a^{\frac{1}{n+1} + \frac{1}{n(n+1)}}-a^{\frac{1}{n+1}}}{\frac{1}{n(n+1)}} } \cdot \frac{n^2}{n(n+1)} Taking the limit as n n \to \infty , we get that the desired limit is equal to: d d x ( a x ) x = 0 = ln ( a ) a x x = 0 = ln a {\color{#0C6AC7}\frac{d}{dx}\left ( a^{x} \right )\Bigr|_{x = 0}} = \ln{(a)}\cdot a^{x}\Bigr|_{x = 0} = \ln{a}

Théo Leblanc
Sep 29, 2019

n 2 ( a 1 / n a 1 / ( n + 1 ) ) = n 2 a 1 / ( n + 1 ) ( a 1 / n ( n + 1 ) 1 ) = n 2 a 1 / ( n + 1 ) ( e ln ( a ) / n ( n + 1 ) 1 ) = n + n 2 [ ln ( a ) n ( n + 1 ) + o ( 1 n ( n + 1 ) ) ] = ln ( a ) + o ( 1 ) \begin{aligned} n^2(a^{1/n}-a^{1/(n+1)}) &= n^2a^{1/(n+1)}(a^{1/n(n+1)}-1)\\ &=n^2a^{1/(n+1)}(e^{\ln(a)/n(n+1)}-1)\\ &\underset{n\to +\infty}{=} n^2\left[\frac{\ln(a)}{n(n+1)}+o\left(\frac{1}{n(n+1)}\right)\right]\\ &=\boxed{\ln(a)}+o(1) \end{aligned}

Note:

  • e u = u 0 1 + u + o ( u ) e^u\underset{u\to 0}{=}1+u+o(u)

  • o ( 1 n ( n + 1 ) ) = o ( 1 n 2 ) o\left(\frac{1}{n(n+1)}\right)=o\left(\frac{1}{n^2}\right)

  • a 1 / ( n + 1 ) 1 a^{1/(n+1)}\rightarrow 1

  • n 2 n ( n + 1 ) 1 \frac{n^2}{n(n+1)}\rightarrow 1

路 韩
Oct 19, 2019

use Taylor's formula a n = e ln a n = 1 + ln a n + ln 2 a 2 n 2 + o ( 1 n 3 ) \sqrt[n]{a} = e^{\frac{\ln a}{n}} = 1 + \frac{\ln a}{n} + \frac{\ln^2 a}{2n^2} + o(\frac{1}{n^3})

so a n a n + 1 = ln a n ( n + 1 ) + o ( 1 n 3 ) \sqrt[n]{a} - \sqrt[n+1]{a} = \frac{\ln a}{n(n+1)} + o(\frac{1}{n^3})

thus lim n n 2 ( a n a n + 1 ) = lim n n 2 ln a n ( n + 1 ) = ln a \lim_{n\to \infty} n^2 (\sqrt[n]{a} - \sqrt[n+1]{a}) = \lim_{n\to \infty} \frac{n^2\ln a}{n(n+1)} = \ln a

Razzi Masroor
Sep 30, 2019

Just do a=1 and it is quite obvious that the limit is 0 as the nth and the (n+1)th root of 1 is 1 so their difference is 0. The only answer that would make this work is ln(a).

L N
Sep 23, 2019

More of a remark, not a full answer: A cheap way to get the answer is observe that when a = 1 a = 1 , a n a n + 1 = 1 n 1 n + 1 = 1 1 = 0 \sqrt[n]{a} - \sqrt[n+1]{a} = 1^{n} - 1^{n+1} = 1 - 1 = 0 so lim n n 2 0 = lim n 0 = 0 \lim_{n\to\infty} n^2 \cdot 0 = \lim_{n\to\infty} 0 = 0 . But only ln ( 1 ) = 0 \ln(1) = 0 ... Maybe consider adding 0 0 as an option?

Mukesh Ramanathan
Sep 13, 2019

Im not sure if I’m right but If we let a = 1 and the limit = 0 as n approaches infinity so the only one of options that fits this condition is ln a

John Morrison
Nov 19, 2019

The simplest solution I found was setting a = 1. In this case the answer is always 0. The only answer that fits this is ln(a). If 0 < a < 1, the second term is always negative, and if a > 1, the second term is always positive. This gives more evidence that the only possible answer is ln(a).

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...