limit of integrals

Calculus Level 3

lim x 3 x x 3 3 x sin t t d t = sin A \lim_{x \to 3} \frac{x}{x-3} \int_{3}^{x} \frac{\sin t}{t} dt=\sin A

The equation above holds true for real A A . Find A A .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 22, 2019

L = lim x 3 x 3 x sin t t d t x 3 A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 3 3 x sin t t d t + x × sin x x 1 Differentiate up and down w.r.t. x = lim x 3 sin x = sin 3 \begin{aligned} L & = \lim_{x \to 3} \frac {x\int_3^x \frac {\sin t}t dt}{x-3} & \small \blue{\text{A 0/0 case, L'Hôpital's rule applies.}} \\ & = \lim_{x \to 3} \frac {\int_3^x \frac {\sin t}t dt+x \times \frac {\sin x}x}{1} & \small \blue{\text{Differentiate up and down w.r.t. }x} \\ & = \lim_{x \to 3} \sin x = \sin 3 \end{aligned}

Therefore, A = 3 A=\boxed 3 .


Reference: L'Hôpital's rule

Théo Leblanc
Dec 7, 2019

My solution see the hole limit as a derivative

Let F ( x ) = a x sin ( t ) t d t F(x)=\displaystyle\int_a^x \dfrac{\sin(t)}{t} dt

By fundamental theorem of analysis, F ( x ) = sin ( x ) x F'(x)= \dfrac{\sin(x)}{x}

So,

lim x 3 1 x 3 3 x sin ( t ) t d t = lim x 3 F ( x ) F ( 3 ) x 3 = F ( 3 ) = sin ( 3 ) 3 \begin{aligned} \underset{x\to 3}{\lim} \ \dfrac{1}{x-3}\displaystyle\int_3^x \dfrac{\sin(t)}{t} dt & = \underset{x\to 3}{\lim} \ \dfrac{F(x)-F(3)}{x-3} \\ & = F'(3)\\ & = \frac{\sin(3)}{3} \end{aligned}

Thus,

lim x 3 x × 1 x 3 3 x sin ( t ) t d t = 3 × lim x 3 1 x 3 3 x sin ( t ) t d t = 3 × sin ( 3 ) 3 = sin ( 3 ) \begin{aligned} \underset{x\to 3}{\lim} \ x \times \dfrac{1}{x-3}\displaystyle\int_3^x \dfrac{\sin(t)}{t} dt & = 3 \times \underset{x\to 3}{\lim} \ \dfrac{1}{x-3}\displaystyle\int_3^x \dfrac{\sin(t)}{t} dt \\ & = 3 \times \frac{\sin(3)}{3}\\ & = \boxed{\sin(3)} \end{aligned}

By the way, the question isn't really clear, we need to find a real number, therefore A = 3 + 97638 π A=3+97638 \pi should be a solution as well as 3 3 .

Théo Leblanc - 1 year, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...