Limit of limits 2

Calculus Level 3

lim n 1 n r = 1 2 n r n 2 + r 2 = ? \Large \lim _{ n\rightarrow \infty } \frac { 1 }{ n } \sum _{ r=1 }^{ 2n }{ \frac { r }{ \sqrt { { n }^{ 2 }+{ r }^{ 2 } } } } = \ ?

2 1 \sqrt { 2 } -1 2 + 1 \sqrt { 2 } +1 5 + 1 \sqrt { 5 }+1 5 1 \sqrt { 5 } -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Apr 8, 2016

The limit is lim n 1 n r = 1 2 n r n 1 + r 2 n 2 \LARGE\displaystyle\lim_{n\to\infty}\dfrac{1}{n}\sum_{r=1}^{2n}\dfrac{\frac rn}{\sqrt{1+\frac{r^2}{n^2}}}

By Reimann Sums , this is:-

0 2 x d x 1 + x 2 \LARGE \displaystyle\int_0^2\dfrac{x\mathrm{d}x}{\sqrt{1+x^2}}

Observing d ( 1 + x 2 ) = 2 x d x \mathrm{d}(1+x^2)=2x\mathrm{d}x , integral simplifies to [ 1 + x 2 ] 0 2 \LARGE [\sqrt{1+x^2}]_{0}^2

= 5 1 =\huge\boxed{\sqrt 5-1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...