Does the formula of the sum of powers help?

Calculus Level 4

lim n [ n 2 ( 1 n + 2 n + 3 n + + 345 8 n ) 1 n ( 1 cos 1 n ) ] \large \lim_{n\to\infty} \left[n^2 (1^n+2^n+3^n+\ldots+3458^n)^{\frac1n} \left(1-\cos\frac1n\right) \right ]

Evaluate the limit above.


The answer is 1729.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Ner
Jun 15, 2015

lim n [ ( 1 n + 2 n + 3 n + . . . + 345 8 n ) 1 n . n 2 . ( 1 cos ( 1 n ) ) ] = lim n [ 3458 ( ( 1 3458 ) n + ( 2 3458 ) n + ( 3 3458 ) n + . . . + ( 3458 3458 ) n ) 1 n . ( 1 cos ( 1 n ) ) ( 1 n ) 2 ] = 3458 ( 1 2 ) = 1729 \displaystyle\lim _{ n\rightarrow \infty }{ { \left[ { \left( { 1 }^{ n }+{ 2 }^{ n }+{ 3 }^{ n }+...+3458^{ n } \right) }^{ \frac { 1 }{ n } }.{ n }^{ 2 }.\left( 1-\cos { \left( \frac { 1 }{ n } \right) } \right) \right] } } \\ = \displaystyle\lim _{ n\rightarrow \infty }{ { \left[ { 3458\left( { \left( \frac { 1 }{ 3458 } \right) }^{ n }+{ \left( \frac { 2 }{ 3458 } \right) }^{ n }+{ \left( \frac { 3 }{ 3458 } \right) }^{ n }+...+{ \left( \frac { 3458 }{ 3458 } \right) }^{ n } \right) }^{ \frac { 1 }{ n } }.\frac { \left( 1-\cos { \left( \frac { 1 }{ n } \right) } \right) }{ { \left( \frac { 1 }{ n } \right) }^{ 2 } } \right] } } \\ = 3458\left( \frac { 1 }{ 2 } \right) \\ \Huge\color{#3D99F6}{=\boxed{1729}}

Good problem !!! although I do not like the number 1729 that much .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...