Limit of logarithm of square roots

Calculus Level 3

lim x log x ( x 2 + 1 x 2 1 ) = ? \large \lim_{x\to\infty} \log_x\left(\sqrt{x^2+1} - \sqrt{x^2-1}\right) = \, ?


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim x log x ( x 2 + 1 x 2 1 ) = lim x ln ( x 2 + 1 x 2 1 ) ln x A / case, L’H o ˆ pital’s rule applies. = lim x x ( x 2 + 1 ) ( x 2 1 ) 1 x Differentiate up and down w.r.t. x = lim x x 2 x 4 1 Divide up and down by x 2 = lim x 1 1 1 x 4 = 1 \begin{aligned} L & = \lim_{x \to \infty} \log_x \left(\sqrt{x^2+1} - \sqrt{x^2-1} \right) \\ & = \lim_{x \to \infty} \frac {\ln \left(\sqrt{x^2+1} - \sqrt{x^2-1} \right)}{\ln x} & \small {\color{#3D99F6}\text{A }\infty/\infty \text{ case, L'Hôpital's rule applies.}} \\ & = \lim_{x \to \infty} \frac {-\frac x{\sqrt{(x^2+1)(x^2-1)}}}{\frac 1x} & \small {\color{#3D99F6}\text{Differentiate up and down w.r.t. }x} \\ & = \lim_{x \to \infty} -\frac {x^2}{\sqrt{x^4-1}} & \small {\color{#3D99F6}\text{Divide up and down by }x^2} \\ & = \lim_{x \to \infty} -\frac 1{\sqrt{1-\frac 1{x^4}}} \\ & = \boxed{-1} \end{aligned}

Ariel Gershon
Nov 8, 2016

lim x log x ( x 2 + 1 x 2 1 ) = lim x log x ( 2 x 2 + 1 + x 2 1 ) = lim x [ log x ( 2 ) log x ( x ) log x ( 1 + 1 x 2 + 1 1 x 2 ) ] = 1 \begin{aligned} & \lim_{x\to\infty} \log_x \left(\sqrt{x^2+1} - \sqrt{x^2-1}\right)\\ = & \lim_{x\to\infty} \log_x \left(\dfrac{2}{\sqrt{x^2+1}+\sqrt{x^2-1}} \right)\\ = & \lim_{x\to\infty} \left[\log_x(2) - \log_x(x) - \log_x\left(\sqrt{1+\dfrac{1}{x^2}} + \sqrt{1-\dfrac{1}{x^2}} \right) \right]\\ = & -1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...