Limit of Product!

Calculus Level 4

lim n i = 1 n cos ( x 2 i ) = ? \large \lim_{n \to \infty} {\prod_{i=1}^{n} \cos \left( \frac{x}{2^{i}} \right)} = \ ?

Try more here .

sin x \sin x x sin x \frac{x}{ \sin x} sin x x \frac{ \sin x}{x} 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 21, 2017

Consider the product P ( n ) P(n) as follows:

P ( n ) = k = 1 n cos x 2 k P ( 1 ) = cos x 2 = sin x 2 sin x 2 × cos x 2 = sin x 2 1 sin x 2 1 P ( 2 ) = cos x 2 cos x 4 = sin x 2 sin x 2 × cos x 4 = sin x 4 sin x 4 cos x 4 × cos x 4 = sin x 2 2 sin x 2 2 \begin{aligned} P(n) & = \prod_{k=1}^n \cos \frac x{2^k} \\ P({\color{#D61F06}1}) & = \cos \frac x2 = \frac {\sin \frac x2}{\sin \frac x2} \times \cos \frac x2 = \frac {\sin x}{2^{\color{#D61F06}1} \sin \frac x{2^{\color{#D61F06}1}}} \\ P({\color{#D61F06}2}) & = \cos \frac x2 \cos \frac x4 = \frac {\sin x}{2\sin \frac x2} \times \cos \frac x4 = \frac {\sin x}{4\sin \frac x4 \cos \frac x4}\times \cos \frac x4 = \frac {\sin x}{2^{\color{#D61F06}2} \sin \frac x{2^{\color{#D61F06}2}}} \end{aligned}

We can readily prove by induction that P ( n ) = sin x 2 n sin x 2 n P({\color{#D61F06}n}) = \dfrac {\sin x}{2^{\color{#D61F06}n} \sin \frac x{2^{\color{#D61F06}n}}} . Therefore, we have:

L = lim n k = 1 n cos x 2 k = lim n sin x 2 n sin x 2 n = lim n sin x x sin x 2 n x 2 n Let u = x 2 n = lim u 0 sin x x sin u u = sin x x \large \begin{aligned} L & = \lim_{n \to \infty} \prod_{k=1}^n \cos \frac x{2^k} \\ & = \lim_{n \to \infty} \frac {\sin x}{2^n \sin \frac x{2^n}} \\ & = \lim_{n \to \infty} \frac {\sin x}{\frac {x\sin \frac x{2^n}}{\frac x{2^n}}} & \small \color{#3D99F6} \text{Let }u = \frac x {2^n} \\ & = \lim_{u \to 0} \frac {\sin x}{x \frac {\sin u}u} \\ & = \boxed{\dfrac {\sin x}x} \end{aligned}

Anurag Pandey
May 4, 2015

By the theorem of Euler we know that Sin x = x cos x /2 . cos x/2^2.........till infinity.. Just now cross multiplying x we get our answer. And the Euler theorem can also be proved easily by simply using sine double angle formulae and some approximation as sinx is approximately equal to x for very small angles.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...