Limit of Sine sum

Calculus Level 3

If the limit of lim n ( sin π n + 1 + sin π n + 2 + sin π n + 3 + sin π 2 n ) = a ln b \lim_{n\to\infty}\left(\sin\frac{\pi}{n+1} +\sin\frac{\pi}{n+2} +\sin\frac{\pi}{n+3}+\sin\frac{\pi}{2n}\right)=a\ln b where a , b a,b are real numbers and b b is prime. Find the value or a b + b a a^b+b^a .


The answer is 18.6945.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let us rewrite the series as :- lim n r = 1 n 1 n π 1 + r n sin ( 1 n π 1 + r n ) 1 ( 1 n ) ( π 1 + 1 n ) \Large \lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{n}\frac{\pi}{1+\frac{r}{n}} \sin(\frac{1}{n}\frac{\pi}{1+\frac{r}{n}})\frac{1}{(\frac{1}{n})(\frac{\pi}{1+\frac{1}{n}})}

Now the sequence 1 n π 1 + r n \large \frac{1}{n}\frac{\pi}{1+\frac{r}{n}} tends to 0 0 as n n\to\infty

So let us call it θ = 1 n π 1 + r n \large \theta =\frac{1}{n}\frac{\pi}{1+\frac{r}{n}} . Hence θ 0 \theta \to 0 as n n \to \infty .

So lim n ( sin ( 1 n π 1 + r n ) ) 1 ( 1 n π 1 + 1 n ) = lim θ 0 s i n ( θ ) θ \large \lim_{n\to\infty} (\sin(\frac{1}{n}\frac{\pi}{1+\frac{r}{n}}))\frac{1}{(\frac{1}{n}\frac{\pi}{1+\frac{1}{n}})} = \lim_{\theta\to0} \frac{sin(\theta)}{\theta} tends to 1 1 as n n\to\infty

So the sum is equivalent to :-

lim n r = 1 n 1 n π 1 + r n \large \lim_{n\to\infty} \sum_{r=1}^{n} \frac{1}{n}\frac{\pi}{1+\frac{r}{n}}

Using Riemann Sums , we have:-

0 1 π 1 + x d x = π ln ( 2 ) \Large \int_{0}^{1} \frac{\pi}{1+x} dx = \pi \ln(2)

The given expression can be rewritten as lim n i = 1 n sin π n + i π n + i × π n + i = π lim h 0 , n h = 1 i = 1 n h 1 + i h = π 0 1 d x 1 + x = π ln 2 \lim_{n\to \infty}\sum_{i=1}^n \dfrac{\sin \frac{π}{n+i}}{\frac{π}{n+i}}\times \dfrac{π}{n+i}=π\lim_{h\to 0, nh=1} \sum_{i=1}^n \dfrac{h}{1+ih}=π\displaystyle \int_0^1 \dfrac{dx}{1+x}=π\ln 2 . So, a = π , b = 2 a=π, b=2 , and a b + b a = π 2 + 2 π 18.6945 a^b+b^a=π^2+2^π\approx \boxed {18.6945} .

Naren Bhandari
Apr 25, 2020

Call the limit of sum L ( n ) = lim n k = 1 n sin π n + k \displaystyle L(n)= \lim_{n\to\infty} \sum_{k=1}^n\sin\frac{\pi}{n+k} . By Taylor theorem one can easily deduce that for x > 0 x>0 the following inequality holds true. x x 3 6 < sin x < x x-\frac{x^3}{6}< \sin x< x and for x = π n + k x=\frac{\pi}{n+k} and k > 0 k>0 we have lim n k = 1 n ( π n + k π 3 6 ( n + k ) 3 ) < L ( n ) < lim n k = 1 n π n + k \lim_{n\to\infty}\sum_{k=1}^{n}\left(\frac{\pi}{n+k}-\frac{\pi^3}{6(n+k)^3}\right)< L(n)<\lim_{n\to\infty}\sum_{k=1}^n\frac{\pi}{n+k} Also we note that 1 2 n 1 n + k 1 n + 1 \frac{1}{2n}\leq \frac{1}{n+k}\leq \frac{1}{n+1} as n + 1 n + k 2 n n+1\leq n+k\leq 2n for 1 k n 1\leq k\leq n ( prove by induction ) and hence lim n π 8 n 3 k = 1 n L ( n ) π ( n + 1 ) 3 lim n k = 1 n \lim_{n\to\infty}\frac{\pi}{8n^3}\sum_{k=1}^n \leq L'(n)\leq \frac{ \pi}{(n+1)^3}\lim_{n\to\infty}\sum_{k=1}^n therefore the limit of lim n k = 1 n π 6 ( n + k ) 3 = L ( n ) = 0 \displaystyle \lim_{n\to\infty}\sum_{k=1}^n\frac{\pi}{6(n+k)^3}=L'(n)=0 by squeeze theorem as the lim n π 8 n 3 k = 1 n = lim n n π 8 n 3 = 0 = lim n π n ( n + 1 ) 3 \lim_{n\to\infty}\frac{\pi}{8n^3}\sum_{k=1}^n = \lim_{n\to\infty}\frac{n\pi}{8n^3}=0=\lim_{n\to\infty}\frac{\pi n}{(n+1)^3} and hence the original limit (by squeeze theorem) L ( n ) = lim n k = 1 n π n + k = 0 1 π 1 + x d x = π ln 2 L(n)=\lim_{n\to\infty}\sum_{k=1}^n\frac{\pi}{n+k}=\int_0^1\frac{\pi}{1+x}dx= \pi\ln 2 and the required answer is π 2 + 2 π 18.6945 \pi^2+2^{\pi}\approx 18.6945 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...