Limit of Sum

Algebra Level 3

What is the limit of 1 / 2 + 1 / 6 + 1 / 12 + 1 / 20 + 1 / 30 + 1 / 42 + . . . 1/2+1/6+1/12+1/20+1/30+1/42+... ?

Uncalculatable 99/100 3/4 Other 6/7 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
May 17, 2018

The given series can be re-written as

1 2 + 1 6 + 1 12 + 1 20 + . . . . = 1 1 2 + 1 2 3 + 1 3 4 + 1 4 5 + . . . . = n = 1 1 n ( n + 1 ) \begin{aligned} \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12} + \dfrac{1}{20} + .... &= \dfrac{1}{1 \cdot 2} + \dfrac{1}{2 \cdot 3} + \dfrac{1}{3 \cdot 4} + \dfrac{1}{4 \cdot 5} +.... \\ \\ &= \sum_{n = 1}^{\infty} \dfrac{1}{n(n + 1)} \end{aligned}

Using the decomposition 1 k ( k + 1 ) = 1 k 1 k + 1 \dfrac{1}{k(k + 1)} = \dfrac{1}{k} - \dfrac{1}{k + 1} , we get that the n n th partial sum, s n s_n , is

s n = 1 1 2 + 1 2 3 + 1 3 4 + 1 4 5 + . . . . + 1 n ( n + 1 ) = ( 1 1 1 2 ) + ( 1 2 1 3 ) + ( 1 3 1 4 ) + . . . . + ( 1 n 1 n + 1 ) = 1 1 n + 1 \begin{aligned} s_n &= \dfrac{1}{1 \cdot 2} + \dfrac{1}{2 \cdot 3} + \dfrac{1}{3 \cdot 4} + \dfrac{1}{4 \cdot 5} +....+ \dfrac{1}{n(n + 1)} \\ \\ &= \left( \dfrac{1}{1} - \dfrac{1}{2} \right) + \left( \dfrac{1}{2} - \dfrac{1}{3} \right) + \left( \dfrac{1}{3} - \dfrac{1}{4} \right) + .... +\left( \dfrac{1}{n} - \dfrac{1}{n + 1} \right) \\ \\ &= 1 - \dfrac{1}{n + 1} \end{aligned}

The sequence { s n } \{s_n\} is convergent, so

1 2 + 1 6 + 1 12 + 1 20 + . . . . = n = 1 1 n ( n + 1 ) = lim n s n = lim n ( 1 1 n + 1 ) = 1 \begin{aligned} \dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{12} + \dfrac{1}{20} + .... &= \sum_{n = 1}^{\infty} \dfrac{1}{n(n + 1)} \\ \\ &= \lim_{n \rightarrow \infty} s_n \\ \\ &= \lim_{n \rightarrow \infty} \left( 1 - \dfrac{1}{n + 1} \right) = \boxed{1} \end{aligned}

Kim Jong-un
May 17, 2018

As you can see, the sum of the terms up to n n is n n + 1 \frac{n}{n+1} . As we continue, we can see that the limit approaches 1. EDIT: Use the solution above. I am terrible at writing solutions.

Can you eloborate some more? I for can see a lot, but not everything I 'see' is necessarily true.

Peter van der Linden - 3 years ago

Log in to reply

Sorry, I wrote the solution in a rush...

Kim Jong-un - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...