Find the limit

Calculus Level 3

lim n ( n ( n + 1 ) 2 + n ( n + 2 ) 2 + n ( n + 3 ) 2 + . . . + 1 25 n ) \lim _{ n\to \infty }{ \left( \frac { n }{ { \left( n+1 \right) }^{ 2 } } +\frac { n }{ { \left( n+2 \right) }^{ 2 } } +\frac { n }{ { \left( n+3 \right) }^{ 2 } } +...+\frac { 1 }{ 25n } \right) }


The answer is 0.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Odysseas Kal
Feb 21, 2018

Note that the limit can be re-written as From a Riemann Sum, we know that So,

First Last
Feb 21, 2018

Using the limit definition of an integral:

S = lim n ( n ( n + 1 ) 2 + n ( n + 2 ) 2 + n ( n + 3 ) 2 + . . . + 1 25 n ) = \displaystyle\text{S}=\lim_{n\to\infty } { \quad \left( \frac { n }{ { \left( n+1 \right) }^{ 2 } } +\frac { n }{ { \left( n+2 \right) }^{ 2 } } +\frac { n }{ { \left( n+3 \right) }^{ 2 } } +...+\frac { 1 }{ 25n } \right)}=

lim n i = 1 4 n n ( n + i ) 2 = lim n 1 n i = 1 4 n 1 ( 1 + i n ) 2 = 0 4 1 ( 1 + x ) 2 d x = 4 5 \displaystyle\lim_{n\to\infty}\sum_{i=1}^{4n}\frac{n}{(n+i)^2}=\lim_{n\to\infty}\frac1{n}\sum_{i=1}^{4n}\frac{1}{(1+\frac{i}{n})^2}=\int_0^4\frac1{(1+x)^2}dx=\boxed{\frac4{5}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...