Limit of summation

Calculus Level 5

lim n k = 0 n ( n k ) n k ( k + 3 ) \large \lim_{n\to \infty} \sum_{k=0}^{n} \dfrac{\binom{n}{k}}{n^k(k+3)}

Evaluate the above limit to 3 decimal places.


The answer is 0.718281828.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 16, 2019

From binomial theorem we have

( 1 + x ) n = k = 0 n ( n k ) x k Multiply both sides by x 2 x 2 ( 1 + x ) n = k = 0 n ( n k ) x k + 2 Integrate both sides from 0 to 1 n 0 1 n x 2 ( 1 + x ) n d x = k = 0 n ( n k ) k + 3 x k + 3 0 1 n = 1 n 3 k = 0 n ( n k ) n k ( k + 3 ) \begin{aligned} (1+x)^n & = \sum_{k=0}^n \binom nk x^k & \small \color{#3D99F6} \text{Multiply both sides by}x^2 \\ x^2(1+x)^n & = \sum_{k=0}^n \binom nk x^{k+2} & \small \color{#3D99F6} \text{Integrate both sides from 0 to }\frac 1n \\ \int_0^\frac 1n x^2(1+x)^n dx & = \sum_{k=0}^n \frac {\binom nk}{k+3} x^{k+3} \bigg|_0^\frac 1n \\ & = \frac 1{n^3} \sum_{k=0}^n \frac {\binom nk}{n^k(k+3)} \end{aligned}

Therefore,

L = lim n k = 0 n ( n k ) n k ( k + 3 ) = lim n n 3 0 1 n x 2 ( 1 + x ) n d x By integration by part = lim n n 3 [ x 2 ( 1 + x ) n + 1 n + 1 2 x ( 1 + x ) n + 2 ( n + 1 ) ( n + 2 ) + 2 ( 1 + x ) n + 3 ( n + 1 ) ( n + 2 ) ( n + 3 ) ] 0 1 n = lim n [ ( 1 + 1 n ) n 2 ( 1 + 1 n ) n + 1 1 + 2 n + 2 ( 1 + 1 n ) n + 2 ( 1 + 2 n ) ( 1 + 3 n ) 2 ( 1 + 1 n ) ( 1 + 2 n ) ( 1 + 3 n ) ] Note that lim n ( 1 + 1 n ) n = e = e 2 e + 2 e 2 = e 2 0.718 \begin{aligned} L & = \lim_{n \to \infty} \sum_{k=0}^n \frac {\binom nk}{n^k(k+3)} \\ & = \lim_{n \to \infty} n^3 \color{#3D99F6} \int_0^\frac 1n x^2(1+x)^n dx & \small \color{#3D99F6} \text{By integration by part} \\ & = \lim_{n \to \infty} n^3 \color{#3D99F6} \left[\frac {x^2(1+x)^{n+1}}{n+1}-\frac {2x(1+x)^{n+2}}{(n+1)(n+2)} +\frac {2(1+x)^{n+3}}{(n+1)(n+2)(n+3)} \right]_0^\frac 1n \\ & = \lim_{n \to \infty} \left[\left(1+\frac 1n \right)^n - \frac {2\left(1+\frac 1n\right)^{n+1}}{1+\frac 2n} + \frac {2\left(1+\frac 1n \right)^{n+2}}{\left(1+\frac 2n\right)\left(1+\frac 3n\right)} - \frac 2{\left(1+\frac 1n\right)\left(1+\frac 2n\right)\left(1+\frac 3n\right)} \right] & \small \color{#3D99F6} \text{Note that}\lim_{n \to \infty} \left(1+\frac 1n\right)^n = e \\ & = e - 2e+2e - 2 = e-2 \approx \boxed {0.718} \end{aligned}

Aaghaz Mahajan
Sep 15, 2019

Observe that the summation is

k = 0 n nCr ( n , k ) k + 3 ( 1 n ) k \sum_{k=0}^n\frac{\operatorname{nCr}\left(n,k\right)}{k+3}\cdot\left(\frac{1}{n}\right)^k

= k = 0 n 0 1 x ( k + 2 ) nCr ( n , k ) ( 1 n ) k d x =\sum_{k=0}^n\int_0^1x^{\left(k+2\right)}\operatorname{nCr}\left(n,k\right)\cdot\left(\frac{1}{n}\right)^kdx

= 0 1 ( x 2 k = 0 n nCr ( n , k ) ( x n ) k ) d x =\int_0^1\left(x^2\sum_{k=0}^n\operatorname{nCr}\left(n,k\right)\cdot\left(\frac{x}{n}\right)^k\right)dx

= 0 1 x 2 ( 1 + x n ) n d x =\int_0^1x^2\left(1+\frac{x}{n}\right)^ndx

Now, letting n \displaystyle n tend to \displaystyle \infty the last integral turns to

0 1 x 2 e x d x \int_0^1x^2e^xdx

This can be easily evaluated and thus the answer comes out to be e 2 \displaystyle \boxed {e-2} .

Additional Content:

Note that using the same technique we can generalise the sum given in the question. For any real number m 1 \displaystyle m\ge1

k = 0 n nCr ( n , k ) k + m ( 1 n ) k = 0 1 x ( m 1 ) e x d x \sum_{k=0}^n\frac{\operatorname{nCr}\left(n,k\right)}{k+m}\cdot\left(\frac{1}{n}\right)^k=\int_0^1x^{\left(m-1\right)}e^xdx

when n \displaystyle n tends to \displaystyle \infty .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...