Let be the finite area bounded by the line and the parabola , where is a positive real number.
Evaluate
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, we will find the x-coordinates of intersection of y = k x + k and y = x 2 :
k x + k = x 2
x 2 − k x − k = 0
x = 2 k + k 2 + 4 k or x = 2 k − k 2 + 4 k .
When x=0: k x + k = k and x 2 = 0 .
As k is a positive number, y = k x + k is above y = x 2 between the points of intersection.
A k = ∫ 2 k − k 2 + 4 k 2 k + k 2 + 4 k ( k x + k − x 2 ) d x = − ∫ 2 k − k 2 + 4 k 2 k + k 2 + 4 k ( x 2 ) d x + ∫ 2 k − k 2 + 4 k 2 k + k 2 + 4 k ( k x ) d x + ∫ 2 k − k 2 + 4 k 2 k + k 2 + 4 k ( k ) d x
= − 3 1 ( 2 k + k 2 + 4 k ) 3 + 3 1 ( 2 k − k 2 + 4 k ) 3 + 2 1 k ( 2 k + k 2 + 4 k ) 2 − 2 1 k ( 2 k − k 2 + 4 k ) 2 + k ( 2 k + k 2 + 4 k ) − k ( 2 k − k 2 + 4 k )
= − 4 k 2 k 2 + 4 k − 1 2 k 2 k 2 + 4 k − 3 k k 2 + 4 k + 2 k 2 k 2 + 4 k + k k 2 + 4 k
= 6 k 2 k 2 + 4 k + 3 2 k k 2 + 4 k
Now, the limit is
k → ∞ lim k 3 A k = k → ∞ lim k 3 6 k 2 k 2 + 4 k + 3 2 k k 2 + 4 k = k → ∞ lim [ ( 6 k 2 k 2 + 3 k 2 2 k ) × k k 2 + 4 k ]
= k → ∞ lim ( 6 1 − 0 ) × k 2 k 2 + 4 k = 6 1 × k → ∞ lim ( 1 + k 4 ) = 6 1 × 1 = 6 1 .