Limit of the bounded area

Calculus Level 4

Let A k A_k be the finite area bounded by the line y = k x + k y=kx+k and the parabola y = x 2 y=x^2 , where k k is a positive real number.

Evaluate

lim k A k k 3 . \lim_{k \to \infty}\dfrac{A_k}{k^3} .

2 3 \frac{2}{3} 0 0 1 1 1 2 \frac{1}{2} 1 3 \frac{1}{3} 1 6 \frac{1}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tarmo Taipale
Oct 8, 2016

First, we will find the x-coordinates of intersection of y = k x + k y=kx+k and y = x 2 y=x^2 :

k x + k = x 2 kx+k=x^2

x 2 k x k = 0 x^2-kx-k=0

x = k + k 2 + 4 k 2 x=\frac{k+\sqrt{k^2+4k}}{2} or x = k k 2 + 4 k 2 x=\frac{k-\sqrt{k^2+4k}}{2} .

When x=0: k x + k = k kx+k=k and x 2 = 0 x^2=0 .

As k k is a positive number, y = k x + k y=kx+k is above y = x 2 y=x^2 between the points of intersection.

A k = k k 2 + 4 k 2 k + k 2 + 4 k 2 ( k x + k x 2 ) d x A_k=\int_{\frac{k-\sqrt{k^2+4k}}{2}}^{\frac{k+\sqrt{k^2+4k}}{2}}(kx+k-x^2)dx = k k 2 + 4 k 2 k + k 2 + 4 k 2 ( x 2 ) d x + k k 2 + 4 k 2 k + k 2 + 4 k 2 ( k x ) d x + k k 2 + 4 k 2 k + k 2 + 4 k 2 ( k ) d x =-\int_{\frac{k-\sqrt{k^2+4k}}{2}}^{\frac{k+\sqrt{k^2+4k}}{2}}(x^2)dx+\int_{\frac{k-\sqrt{k^2+4k}}{2}}^{\frac{k+\sqrt{k^2+4k}}{2}}(kx)dx+\int_{\frac{k-\sqrt{k^2+4k}}{2}}^{\frac{k+\sqrt{k^2+4k}}{2}}(k)dx

= 1 3 ( k + k 2 + 4 k 2 ) 3 + 1 3 ( k k 2 + 4 k 2 ) 3 + 1 2 k ( k + k 2 + 4 k 2 ) 2 1 2 k ( k k 2 + 4 k 2 ) 2 + k ( k + k 2 + 4 k 2 ) k ( k k 2 + 4 k 2 ) =-\frac{1}{3}(\frac{k+\sqrt{k^2+4k}}{2})^3+\frac{1}{3}(\frac{k-\sqrt{k^2+4k}}{2})^3+\frac{1}{2}k(\frac{k+\sqrt{k^2+4k}}{2})^2-\frac{1}{2}k(\frac{k-\sqrt{k^2+4k}}{2})^2+k(\frac{k+\sqrt{k^2+4k}}{2})-k(\frac{k-\sqrt{k^2+4k}}{2})

= k 2 k 2 + 4 k 4 k 2 k 2 + 4 k 12 k k 2 + 4 k 3 + k 2 k 2 + 4 k 2 + k k 2 + 4 k =-\frac{k^2\sqrt{k^2+4k}}{4}-\frac{k^2\sqrt{k^2+4k}}{12}-\frac{k\sqrt{k^2+4k}}{3}+\frac{k^2\sqrt{k^2+4k}}{2}+k\sqrt{k^2+4k}

= k 2 k 2 + 4 k 6 + 2 k k 2 + 4 k 3 =\frac{k^2\sqrt{k^2+4k}}{6}+\frac{2k\sqrt{k^2+4k}}{3}

Now, the limit is

lim k A k k 3 = lim k k 2 k 2 + 4 k 6 + 2 k k 2 + 4 k 3 k 3 = lim k [ ( k 2 6 k 2 + 2 k 3 k 2 ) × k 2 + 4 k k ] \lim_{k\to\infty}\frac{A_k}{k^3}=\lim_{k\to\infty}\frac{\frac{k^2\sqrt{k^2+4k}}{6}+\frac{2k\sqrt{k^2+4k}}{3}}{k^3}=\lim_{k\to\infty}[(\frac{k^2}{6k^2}+\frac{2k}{3k^2})\times{\frac{\sqrt{k^2+4k}}{k}}]

= lim k ( 1 6 0 ) × k 2 + 4 k k 2 = 1 6 × lim k ( 1 + 4 k ) = 1 6 × 1 = 1 6 =\lim_{k\to\infty}(\frac{1}{6}-0)\times{\sqrt{\frac{k^2+4k}{k^2}}}=\frac{1}{6}\times{\lim_{k\to\infty}(\sqrt{1+\frac{4}{k}})}=\frac{1}{6}\times1=\boxed{\frac{1}{6}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...