Limit of two sequence? And Geometry Test?

Calculus Level 3

Let x 1 { x }_{ 1 } and y 1 { y }_{ 1 } be real numbers and x 1 > y 1 { x }_{ 1 }>{ y }_{ 1 } . For any positive integer n n , define { x n + 1 = 5 6 x n + 1 6 y n y n + 1 = 2 9 x n + 7 9 y n \begin{cases} { x }_{ n+1 }=\frac { 5 }{ 6 } { x }_{ n }+\frac { 1 }{ 6 } { y }_{ n } \\ { y }_{ n+1 }=\frac { 2 }{ 9 } { x }_{ n }+\frac { 7 }{ 9 } { y }_{ n } \end{cases}

Given that lim n x n \displaystyle \lim _{ n\rightarrow \infty }{ { x }_{ n } } can be written as a x 1 + b y 1 c \dfrac { a{ x }_{ 1 }+b{ y }_{ 1 } }{ c } , where a a , b b , and c c are positive integers. Furthermore, suppose x 1 = 12 { x }_{ 1 }=12 , y 1 = 5 { y }_{ 1 }=5 , and define F = lim n x n \displaystyle F=\lim _{ n\rightarrow \infty }{ { x }_{ n } } .

It is known that { C : x 2 + y 2 6 x 4 y + F = 0 L : 2 x + y k = 0 \begin{cases} C:{ x }^{ 2 }+{ y }^{ 2 }-6x-4y+F=0 \\ L:2x+y-k=0 \end{cases} have two distinct intersection point on the Cartesian plane if and only if p < k < q p<k<q .

Define D = a b c p q D=abc-pq . Find the value of D D .

Hint: 4 x n + 3 y n 4{ x }_{ n }+3{ y }_{ n } is a constant for any positive integer n n .


The answer is 40.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Stephen Brown
Dec 18, 2017

Using the hint provided, we can easily see that lim n 4 x n + 3 y n = 4 x 1 + 3 y 1 \lim_{n\rightarrow\infty}4x_n+3y_n=4x_1+3y_1 . We also know that the sequence ( x n , y n ) (x_n,y_n) converges to a fixed point ( x , y ) (x,y) , which we can calculate as

x = 5 6 x + 1 6 y , y = 2 9 x + 7 9 y x = y x=\frac{5}{6}x+\frac{1}{6}y, y=\frac{2}{9}x+\frac{7}{9}y\ \Rightarrow x=y

Combining these pieces of information, we get that

lim x x n = 4 x 1 + 3 y 1 7 \lim_{x\rightarrow\infty}x_n=\frac{4x_1+3y_1}{7}

So a = 4 , b = 3 , c = 7 a=4,b=3,c=7 and F = 9 F=9

Now consider the intersection of C C and L L :

y = k 2 x x 2 + ( k 2 x ) 2 6 x 4 ( k 2 x ) + 9 = 0 5 x 2 + ( 2 4 k ) x + ( k 2 4 k + 9 ) = 0 y=k-2x \Rightarrow x^2+(k-2x)^2-6x-4(k-2x)+9=0 \Rightarrow 5x^2+(2-4k)x+(k^2-4k+9)=0 x = 2 k 1 ± k 2 + 16 k 44 5 x=\frac{2k-1\pm\sqrt{-k^2+16k-44}}{5}

For this to have two distinct solutions, we must have k 2 + 16 k 44 > 0 ( k r 1 ) ( k r 2 ) < 0 r 1 < k < r 2 -k^2+16k-44>0 \Rightarrow (k-r_1)(k-r_2)<0 \Rightarrow r_1<k<r_2 where r 1 < r 2 r_1<r_2 are the roots of k 2 16 k + 44 k^2-16k+44 , but this means p = r 1 p=r_1 and q = r 2 q=r_2 , and we know that p q = r 1 r 2 = 44 pq=r_1r_2=44 . Thus we have

D = a b c p q = ( 4 ) ( 3 ) ( 7 ) 44 = 40 D=abc-pq=(4)(3)(7)-44=\boxed{40}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...