Limit prob

Calculus Level pending

lim x 0 ( e x 1 ) tan 2 x x 3 = ? \large \lim_{x \to 0 } \frac{(e^{x}-1)\tan ^2 x\ } {x^{3}} = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim x 0 ( e x 1 ) tan 2 x x 3 = lim x 0 e x 1 x ( tan x x ) 2 Both are 0/0 cases, L’H o ˆ pital’s rule applies. = lim x 0 e x 1 ( sec 2 x 1 ) 2 Differentiate up and down = 1 \begin{aligned} L & = \lim_{x \to 0} \frac {(e^x-1)\tan^2 x}{x^3} \\ & = \lim_{x \to 0} \frac {e^x-1}x \left(\frac {\tan x}x\right)^2 & \small {\color{#3D99F6}\text{Both are 0/0 cases, L'Hôpital's rule applies.}} \\ & = \lim_{x \to 0} \frac {e^x}1 \left(\frac {\sec^2 x}1 \right)^2 & \small {\color{#3D99F6}\text{Differentiate up and down}} \\ & = \boxed{1} \end{aligned}

@Aditya Thomas , I have changed your question to the present one. Because the original question lim x ( e x 1 ) tan 2 θ x 3 \displaystyle \lim_{x \to \infty} \frac {(e^x-1)\tan^2 \theta}{x^3} \to \infty and also lim x ( e x 1 ) tan 2 x x 3 \displaystyle \lim_{x \to \infty} \frac {(e^x-1)\tan^2 x}{x^3} \to \infty . I hope this is okay. Hope that you learn up LaTex soon.

Chew-Seong Cheong - 4 years, 7 months ago
Hobart Pao
Nov 12, 2016

Without L'Hopital's rule:

Note that lim x 0 sinh x x = 1 \displaystyle \lim_{x \to 0} \dfrac{\sinh x}{x} = 1 and lim x t o 0 sin x x = 1 \displaystyle \lim_{x\ to 0} \dfrac{\sin x}{x} =1 .

sinh x = e x e x 2 = e x ( e 2 x 1 ) 2 = e x ( e x + 1 ) ( e x 1 ) 2 \sinh x = \dfrac{e^x - e^{-x} }{2} = \dfrac{e^{-x} (e^{2x} -1 )}{2} = \dfrac{e^{-x}(e^x + 1)(e^x - 1)}{2}

Thus, what I'm going to do is rewrite the limit as:

lim x 0 e x ( e x + 1 ) ( e x 1 ) 2 sin 2 x x 3 cos 2 x 2 e x ( e x + 1 ) \displaystyle \lim_{x \to 0} \dfrac{e^{-x}(e^x + 1)(e^x - 1)}{2} \cdot \dfrac{\sin^2 x}{x^3 \cos^2 x} \cdot \dfrac{2}{e^{-x} (e^x + 1)}

= lim x 0 sin 2 x sinh x x 3 cos 2 x 2 e x ( e x + 1 ) =\displaystyle \lim_{x \to 0} \dfrac{\sin^2 x \sinh x}{x^3 \cos^2 x} \cdot \dfrac{2}{e^{-x} (e^x + 1)}

= lim x 0 sin x x sin x x sinh x x 1 cos 2 x 2 e x ( e x + 1 ) =\displaystyle \lim_{x \to 0} \dfrac{\sin x }{x} \cdot \dfrac{\sin x }{x} \cdot \dfrac{\sinh x}{x} \cdot \dfrac{1}{\cos^2 x} \cdot \dfrac{2}{e^{-x} (e^x + 1)}

Break it up into a product of five limits, and the first four all exist and equal one, and the last, upon substituting in x = 0 x = 0 , we get 1 \boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...