This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
On rationalising : x → ∞ L im ( x 2 − x + 1 + ( a x + b ) ) ( x 2 − x + 1 − ( a x + b ) ) ( x 2 − x + 1 + ( a x + b ) )
= x → ∞ L im x 2 − x + 1 + ( a x + b ) x 2 − x + 1 − ( a 2 x 2 + 2 a b x + b 2 )
= x → ∞ L im x 2 − x + 1 + ( a x + b ) ( 1 − a 2 ) x 2 − ( 1 + 2 a b ) x + ( 1 − b 2 )
Now dividing numerator and denominator by x , we get
= x → ∞ L im 1 − 0 + 0 + ( a + 0 ) ( 1 − a 2 ) x − ( 1 + 2 a b ) + 0 (Putting 0 where there is x in denominator as 1/x tends to zero)
Now for limit to be zero numerator should be zero and denominator should have a finite value other than zero. So 1 + a = 0 ⇒ a = − 1
Now 1 − a 2 = 0 ⇒ a = 1 ( − 1 n e g l e c t e d a s a c a n n o t b e − 1 )
Also 1 + 2 a b = 0 ⇒ 1 + 2 b = 0 ⇒ b = − 1 / 2
Hence answer is a=1,b=-1/2.