Limit Problem

Calculus Level 3

If lim x ( x 2 x + 1 a x b ) = 0 \displaystyle\lim\limits_{x\to\infty} \left(\sqrt { { x }^{ 2 }-x+1 } -ax-b\right)=0 , then

a=1,b=1/2 a=1,b=-1/2 a=-1,b=1 a=-1,b=-1/2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sahil Bansal
Oct 15, 2015

On rationalising : L i m x ( x 2 x + 1 ( a x + b ) ) ( x 2 x + 1 + ( a x + b ) ) ( x 2 x + 1 + ( a x + b ) ) \underset { x\rightarrow \infty }{ Lim } \frac { (\sqrt { { x }^{ 2 }-x+1 } -(ax+b))(\sqrt { { x }^{ 2 }-x+1 } +(ax+b)) }{ (\sqrt { { x }^{ 2 }-x+1 } +(ax+b)) }

= L i m x x 2 x + 1 ( a 2 x 2 + 2 a b x + b 2 ) x 2 x + 1 + ( a x + b ) =\underset { x\rightarrow \infty }{ Lim } \frac { { x }^{ 2 }-x+1-({ a }^{ 2 }{ x }^{ 2 }+2abx+{ b }^{ 2 }) }{ \sqrt { { x }^{ 2 }-x+1 } +(ax+b) }

= L i m x ( 1 a 2 ) x 2 ( 1 + 2 a b ) x + ( 1 b 2 ) x 2 x + 1 + ( a x + b ) =\underset { x\rightarrow \infty }{ Lim } \frac { (1-{ a }^{ 2 }){ x }^{ 2 }-(1+2ab)x+(1-{ b }^{ 2 }) }{ \sqrt { { x }^{ 2 }-x+1 } +(ax+b) }

Now dividing numerator and denominator by x , we get

= L i m x ( 1 a 2 ) x ( 1 + 2 a b ) + 0 1 0 + 0 + ( a + 0 ) =\underset { x\rightarrow \infty }{ Lim } \frac { (1-{ a }^{ 2 }){ x }-(1+2ab)+0 }{ \sqrt { 1-0+0 } +(a+0) } (Putting 0 where there is x in denominator as 1/x tends to zero)

Now for limit to be zero numerator should be zero and denominator should have a finite value other than zero. So 1 + a 0 a 1 1+a\neq 0\quad \Rightarrow a\neq -1

Now 1 a 2 = 0 a = 1 ( 1 n e g l e c t e d a s a c a n n o t b e 1 ) 1-{ a }^{ 2 }=0\quad \Rightarrow a=1\quad (-1\quad neglected\quad as\quad a\quad cannot\quad be\quad -1)

Also 1 + 2 a b = 0 1 + 2 b = 0 b = 1 / 2 1+2ab=0\quad \Rightarrow 1+2b=0\quad \Rightarrow b=-1/2

Hence answer is a=1,b=-1/2.

Please change the last statement. On Brilliant the options get shuffled from person to person.

Aditya Kumar - 5 years, 8 months ago

Log in to reply

Done ! Thank you.

Sahil Bansal - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...