Limit problem by Hosam Hajjir

Calculus Level 2

lim x 0 1 cos x x sin x = ? \large \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} = \ ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Multiply numerator and denominator by 1 + cos ( x ) 1 + \cos(x) . The fraction in question then reduces to sin ( x ) x × 1 1 + cos ( x ) \dfrac{\sin(x)}{x} \times \dfrac{1}{1+ \cos(x)} , which goes to 0.5 \boxed{0.5} as x 0 x \to 0 .

lim x 0 1 cos ( x ) x sin ( x ) \displaystyle \lim_{x \to 0} \frac{1-\cos(x)}{x\sin(x)}

If we put x = 0 x = 0 into the limit, we will get indeterminate form of type 0 0 \frac{0}{0} . Apply L'Hôpital's rule :

lim x 0 1 cos ( x ) x sin ( x ) = lim x 0 d d x ( 1 cos ( x ) ) d d x ( x sin ( x ) ) \displaystyle \lim_{x \to 0} \frac{1-\cos(x)}{x\sin(x)} = \lim_{x \to 0} \frac{\frac{d}{dx} (1-\cos(x)) }{ \frac{d}{dx} (x\sin(x)) }

= lim x 0 sin ( x ) x cos ( x ) + sin ( x ) \displaystyle = \lim_{x \to 0} \frac{\sin(x)}{x\cos(x)+\sin(x)}

= lim x 0 sin ( x ) x cos ( x ) + sin ( x ) x \displaystyle = \lim_{x \to 0} \frac{\frac{\sin(x)}{x}} {\cos(x)+ \frac {\sin(x)}{x}}

= lim x 0 sin ( x ) x lim x 0 cos ( x ) + lim x 0 sin ( x ) x = \frac{\displaystyle \lim_{x \to 0} \frac{\sin(x)}{x}}{\displaystyle \lim_{x \to 0} \cos(x) + \lim_{x \to 0} \frac{\sin(x)}{x}}

We know that lim x 0 sin ( x ) x = 1 \displaystyle \lim_{x \to 0} \frac{\sin(x)}{x} = 1

lim x 0 sin ( x ) x lim x 0 cos ( x ) + lim x 0 sin ( x ) x = 1 cos ( 0 ) + 1 = 1 2 \implies \frac{\displaystyle \lim_{x \to 0} \frac{\sin(x)}{x}}{\displaystyle \lim_{x \to 0} \cos(x) + \displaystyle \lim_{x \to 0} \frac{\sin(x)}{x}} = \displaystyle \frac{1}{\cos(0) + 1} = \boxed{\frac{1}{2}}

@Anh Khoa Nguyễn Ngọc , you need to add a backslash before "lim", like \lim in LaTex for lim \lim .

Chew-Seong Cheong - 9 months, 1 week ago

Log in to reply

Thanks. I edited my solution.

Anh Khoa Nguyễn Ngọc - 9 months, 1 week ago

Log in to reply

But you miss some \sin and \cos. You can use \dfrac 12 for 1 2 \dfrac 12 and \displaystyle \lim_{x \to 0} \frac {1-\cos x}{x \sin x} for lim x 0 1 cos x x sin x \displaystyle \lim_{x \to 0} \frac {1-\cos x}{x \sin x}

Chew-Seong Cheong - 9 months, 1 week ago
Chris Lewis
Sep 4, 2020

@Brian Charlesworth has a very elegant answer, but just to show an alternative approach:

For small x x , we have sin x x \sin x \approx x and cos x 1 1 2 x 2 \cos x \approx 1-\frac12 x^2 . Substituting these in we get the limit 1 2 x 2 x 2 = 1 2 \frac{\frac12 x^2}{x^2}=\boxed{\frac12}

Dwaipayan Shikari
Sep 15, 2020

\lim {x \to 0}\frac{1-cosx}{xsinx}=\lim {x \to 0}\frac{2sin^2(x/2)}{x^2}=\lim_{x \to 0}2\frac{x^2}{4x^2}=\frac{1}{2}

Assuming sinx reaches to x (As x reaches to 0) And sin^2\frac{x}{2 } reaches to (\frac{x}{2})^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...