Calculus Problem by LOGA 1

Calculus Level 4

lim n sin ( ( 2 + 3 ) n π + π 6 ) \lim_{n\to\infty}\sin\left(\left(2+\sqrt{3}\right)^{n}\pi+\frac{\pi}{6}\right)

Does the limit above exist?

Bonus : Find the limit if it exists, or prove that it does not exist.

Yes, the limit exist No, the limit does not exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Nov 14, 2020

Note that ( 2 + 3 ) n + ( 2 3 ) n = 2 0 m 1 2 n ( n 2 m ) 2 n 2 m 3 m = 2 K n (2 + \sqrt{3})^n + (2 - \sqrt{3})^n \; = \; 2\sum_{0 \le m \le \frac12n}\binom{n}{2m} 2^{n-2m} 3^m \; =\; 2K_n is an even integer, and hence sin ( ( 2 + 3 ) n π + 1 6 π ) = sin ( 2 K n π + 1 6 π ( 2 3 ) n π ) = sin ( 1 6 π ( 2 3 ) n π ) \sin\left((2 + \sqrt{3})^n\pi + \tfrac16\pi\right) \; = \; \sin\left(2K_n\pi + \tfrac16\pi - (2 -\sqrt{3})^n\pi\right) \; = \; \sin\left(\tfrac16\pi - (2 - \sqrt{3})^n\pi\right) Since 0 < 2 3 < 1 0 < 2 - \sqrt{3} < 1 we deduce that ( 2 3 ) n 0 (2 - \sqrt{3})^n \to 0 as n n \to \infty , and hence lim n sin ( ( 2 + 3 ) n π + 1 6 π ) = sin 1 6 π = 1 2 \lim_{n \to \infty}\sin\left((2 + \sqrt{3})^n\pi + \tfrac16\pi\right) \; = \; \sin\tfrac16\pi = \tfrac12

This is just an approximate and intuitive way to solve this problem:

First, note that choosing a bigger integer value of n n will result in a closer approximation of ( 2 + 3 ) n (2+ \sqrt{3})^{n} to an even integer. For example:

n n ( 2 + 3 ) n (2+ \sqrt{3})^{n}
2 2 13.92820323... 13.92820323...
3 3 51.98076211... 51.98076211...
4 4 193.948452... 193.948452...
5 5 723.9986188... 723.9986188...
. . . ... . . . ...

As the value of ( 2 + 3 ) n (2+ \sqrt{3})^{n} get nearer to an even number when n n increases, π ( 2 + 3 ) n \pi (2+ \sqrt{3})^{n} can be approximated and treated like 2 k π 2k\pi (with k Z k \in \Z ) so that:

sin ( π ( 2 + 3 ) n + π 6 ) sin ( 2 k π + π 6 ) = sin ( π 6 ) = 1 2 \displaystyle \sin(\pi (2+ \sqrt{3})^{n} + \frac{\pi}{6}) \approx \sin(2k\pi + \frac{\pi}{6}) = \sin(\frac{\pi}{6}) = \frac{1}{2}

lim n sin ( π ( 2 + 3 ) n + π 6 ) = 1 2 \implies \displaystyle \lim_{n \to \infty} \sin ( \pi (2+ \sqrt{3})^{n} + \frac{\pi}{6}) = \green{\boxed{\frac{1}{2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...