Let be the number of digits when is written in base , and let be the number of digits when is written in base . For example, in base is , hence . Then, find the value of the following limit.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that the number of digits of n in base b is given by d b ( n ) = ⌊ lo g b n ⌋ + 1 , where n is in decimal.
L = n → ∞ lim n 2 p ( n ) q ( n ) = n → ∞ lim n 2 ( ⌊ lo g 6 8 n ⌋ + 1 ) ( ⌊ lo g 4 6 n ⌋ + 1 ) = n → ∞ lim n 2 ⌊ n lo g 6 8 ⌋ ⌊ n lo g 4 6 ⌋ + ⌊ n lo g 6 8 ⌋ + ⌊ n lo g 4 6 ⌋ + 1 = n → ∞ lim n 2 n 2 lo g 6 8 lo g 4 6 + n lo g 6 8 + n lo g 4 6 + 1 = n → ∞ lim 1 lo g 6 8 lo g 4 6 + n lo g 6 8 + n lo g 4 6 + n 2 1 = lo g 6 8 lo g 4 6 = lo g 2 6 lo g 2 8 × lo g 2 4 lo g 2 6 = 2 3 = 1 . 5 For very large n , Divide up and down by n 2