Limit Problem Of Different Number System

Calculus Level 3

Let p ( n ) p(n) be the number of digits when 8 n 8^n is written in base 6 6 , and let q ( n ) q(n) be the number of digits when 6 n 6^n is written in base 4 4 . For example, 8 2 8^2 in base 6 6 is 144 144 , hence p ( 2 ) = 3 p(2)=3 . Then, find the value of the following limit.

lim n p ( n ) q ( n ) n 2 \large \lim_{n \to \infty} \frac {p(n)q(n)}{n^2}


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Note that the number of digits of n n in base b b is given by d b ( n ) = log b n + 1 d_b (n) = \lfloor \log_b n \rfloor + 1 , where n n is in decimal.

L = lim n p ( n ) q ( n ) n 2 = lim n ( log 6 8 n + 1 ) ( log 4 6 n + 1 ) n 2 = lim n n log 6 8 n log 4 6 + n log 6 8 + n log 4 6 + 1 n 2 For very large n , = lim n n 2 log 6 8 log 4 6 + n log 6 8 + n log 4 6 + 1 n 2 Divide up and down by n 2 = lim n log 6 8 log 4 6 + log 6 8 n + log 4 6 n + 1 n 2 1 = log 6 8 log 4 6 = log 2 8 log 2 6 × log 2 6 log 2 4 = 3 2 = 1.5 \begin{aligned} L & = \lim_{n \to \infty} \frac {p(n)q(n)}{n^2} \\ & = \lim_{n \to \infty} \frac {\left(\left \lfloor \log_6 8^n \right \rfloor + 1\right)\left(\left \lfloor \log_4 6^n \right \rfloor + 1\right)}{n^2} \\ & = \lim_{n \to \infty} \frac {\left \lfloor n \log_6 8 \right \rfloor \left \lfloor n \log_4 6 \right \rfloor + \left \lfloor n \log_6 8 \right \rfloor + \left \lfloor n \log_4 6 \right \rfloor + 1}{n^2} & \small \color{#3D99F6} \text{For very large }n, \\ & = \lim_{n \to \infty} \frac {n^2 \log_6 8 \log_4 6 + n \log_6 8 + n \log_4 6 + 1}{n^2} & \small \color{#3D99F6} \text{Divide up and down by }n^2 \\ & = \lim_{n \to \infty} \frac {\log_6 8 \log_4 6 + \frac {\log_6 8}n + \frac {\log_4 6}n + \frac 1{n^2}}1 \\ & = \log_6 8 \log_4 6 = \frac {\log_2 8}{\log_2 6} \times \frac {\log_2 6}{\log_2 4} = \frac 32 = \boxed{1.5} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...