Limit regarding sin x \sin x , can you make a right choice?

Calculus Level 4

lim x 0 ( x sin 3 x 1 x 2 ) \large \lim_{x \to 0} \left(\frac{x}{\sin^3 x} - \frac{1}{x^2}\right)

What can you say about the limit above?

The limit does not exist. The limit is 0, as sin x x \sin x \approx x if x 0 x \approx 0 . The limit is equal to some negative value. The limit is 1 2 \frac{1}{2} . The limit is 1 3 \frac{1}{3} .

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chan Lye Lee
Mar 18, 2018

Note that lim x 0 sin x x = lim x 0 x sin x = 1 \displaystyle \lim_{x \to 0} \frac{\sin x}{x}= \lim_{x \to 0} \frac{x}{\sin x}=1 and by L'hospita;'s Rule, lim x 0 x sin x x 3 = lim x 0 1 cos x 3 x 2 = lim x 0 sin x 6 x = 1 6 \displaystyle \lim_{x \to 0} \frac{x-\sin x}{x^3} = \lim_{x \to 0} \frac{1-\cos x}{3x^2} = \lim_{x \to 0} \frac{\sin x}{6x}=\frac{1}{6} .

Without using Maclaurin series,

lim x 0 ( x sin 3 x 1 x 2 ) = lim x 0 x 3 sin 3 x x 2 sin 3 x = lim x 0 ( x sin x x 3 × x 2 + x sin x + sin 2 x sin 2 x × x sin x ) = lim x 0 x sin x x 3 × lim x 0 ( ( x sin x ) 2 + x sin x + 1 ) × lim x 0 x sin x = 1 6 × 3 × 1 = 1 2 \begin{aligned} \lim_{x \to 0} \left(\frac{x}{\sin^3 x} - \frac{1}{x^2}\right) & = \lim_{x \to 0} \frac{x^3 - \sin ^3x}{x^2\sin^3 x} \\ & = \lim_{x \to 0} \left(\frac{x - \sin x}{x^3} \times \frac{x^2+x\sin x+\sin^2x}{\sin^2x} \times \frac{x}{\sin x} \right) \\ & =\lim_{x \to 0} \frac{x - \sin x}{x^3} \times \lim_{x \to 0}\left(\left(\frac{x}{\sin x}\right)^2 + \frac{x}{\sin x} +1 \right)\times \lim_{x \to 0}\frac{x}{\sin x} \\ & = \frac{1}{6} \times 3 \times 1 \\ & = \boxed{\frac{1}{2}}\end{aligned}

Brian Lie
Mar 17, 2018

L = lim x 0 ( x sin 3 x 1 x 2 ) = lim x 0 x 3 sin 3 x x 2 sin 3 x = lim x 0 ( x sin x ) ( x 2 + x sin x + sin 2 x ) x 5 = lim x 0 ( 1 6 x 3 + ο ( x 3 ) ) ( 3 x 2 ) x 5 = lim x 0 1 2 x 5 + ο ( x 5 ) x 5 = 1 2 \begin{aligned} L&=\lim_{x \to 0} \left(\frac{x}{\sin^3 x} - \frac{1}{x^2}\right) \\&=\lim_{x\to 0}\frac{x^3-\sin ^3 x}{x^2\sin^3 x} \\&=\lim_{x\to 0}\frac{(x-\sin x)(x^2+x\sin x+\sin^2 x)}{x^5} \\&=\lim_{x\to 0}\frac{\left(\frac 16 x^3+\omicron (x^3)\right)(3x^2)}{x^5} \\&=\lim_{x\to 0}\frac {\frac 12 x^5+\omicron (x^5)}{x^5} \\&=\boxed {\frac 12} \end{aligned}

Chew-Seong Cheong
Mar 16, 2018

Relevant wiki: Maclaurin Series

L = lim x 0 ( x sin 3 x 1 x 2 ) From sin 3 x = 3 sin x 4 sin 3 x = lim x 0 ( 4 x 3 sin x sin 3 x 1 x 2 ) By Maclaurin series = lim x 0 ( 4 x 3 ( x x 3 3 ! + x 5 5 ! ) ( 3 x ( 3 x ) 3 3 ! + ( 3 x ) 5 5 ! ) 1 x 2 ) = lim x 0 ( 4 x 4 x 3 2 x 5 + O ( x 7 ) 1 x 2 ) = lim x 0 ( 1 x 2 1 2 x 4 + O ( x 6 ) 1 x 2 ) = lim x 0 x 2 ( x 2 1 2 x 4 + O ( x 6 ) ) x 2 ( x 2 1 2 x 4 + O ( x 6 ) ) = lim x 0 1 2 x 4 O ( x 6 ) x 4 1 2 x 6 + O ( x 8 ) Divide up and down by x 4 = lim x 0 1 2 O ( x 2 ) 1 1 2 x 2 + O ( x 4 ) = 1 2 \begin{aligned} L & = \lim_{x \to 0} \left(\frac x{\sin^3x}-\frac 1{x^2}\right) & \small \color{#3D99F6} \text{From }\sin 3x = 3\sin x - 4\sin^3 x \\ & = \lim_{x \to 0} \left(\frac {4x}{\color{#3D99F6}3\sin x - \sin 3x}-\frac 1{x^2}\right) & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \left(\frac {4x}{\color{#3D99F6}3\left(x - \frac {x^3}{3!} + \frac {x^5}{5!} - \cdots\right) - \left(3x - \frac {(3x)^3}{3!} + \frac {(3x)^5}{5!} - \cdots\right)}-\frac 1{x^2}\right) \\ & = \lim_{x \to 0} \left(\frac {4x}{4x^3- 2x^5 + O(x^7)}-\frac 1{x^2}\right) \\ & = \lim_{x \to 0} \left(\frac 1{x^2- \frac 12x^4 + O(x^6)}-\frac 1{x^2}\right) \\ & = \lim_{x \to 0} \frac {x^2 -\left(x^2- \frac 12x^4 + O(x^6)\right)}{x^2 \left(x^2- \frac 12x^4 + O(x^6)\right)} \\ & = \lim_{x \to 0} \frac {\frac 12x^4 - O(x^6)}{x^4- \frac 12x^6 + O(x^8)} & \small \color{#3D99F6} \text{Divide up and down by }x^4 \\ & = \lim_{x \to 0} \frac {\frac 12 - O(x^2)}{1- \frac 12x^2 + O(x^4)} \\ & = \boxed{\frac 12} \end{aligned}

@Chew-Seong Cheong Solved it similarly!!

Aaghaz Mahajan - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...