Limit Sum

Calculus Level 3

lim n ( 1 n 2 ( n + 1 ) ( n 1 ) + 1 n 2 ( n + 2 ) ( n 2 ) + + 1 n 2 ( n + n ) ( n n ) ) = ? \lim_{n \to \infty}\ ({\frac {1}{n^2} \sqrt{(n+1)(n-1)} + \frac {1}{n^2} \sqrt{(n+2)(n-2)} +\dots+\frac {1}{n^2} \sqrt{(n+n)(n-n)}}) = ?

π 4 \frac {\pi}{4} π 2 12 \frac {\pi ^2}{12} 2 e \frac {2}{e} 15 10 \sqrt{15} - \sqrt{10} π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chris Sapiano
Nov 7, 2019

lim n ( 1 n 2 ( n + 1 ) ( n 1 ) + 1 n 2 ( n + 2 ) ( n 2 ) + + 1 n 2 ( n + n ) ( n n ) ) = ? \lim_{n \to \infty}\ (\frac {1}{n^2} \sqrt{(n+1)(n-1)} + \frac {1}{n^2} \sqrt{(n+2)(n-2)} +\dots+\frac {1}{n^2} \sqrt{(n+n)(n-n)}) = ?

This can be expressed as lim n x = 1 n 1 n 2 ( n + x ) ( n x ) \lim_{n \to \infty} \displaystyle \sum_{x=1}^n \frac {1}{n^2} \sqrt{(n+x)(n-x)}

lim n x = 1 n 1 n 2 n 2 x 2 \lim_{n \to \infty} \displaystyle \sum_{x=1}^n \frac {1}{n^2} \sqrt{n^2-x^2}

lim n x = 1 n 1 n 1 n 2 ( n 2 x 2 ) \lim_{n \to \infty} \displaystyle \sum_{x=1}^n \frac {1}{n} \sqrt{\frac{1}{n^2} (n^2-x^2)}

lim n x = 1 n 1 n 1 x 2 n 2 \lim_{n \to \infty} \displaystyle \sum_{x=1}^n \frac {1}{n} \sqrt{1 - \frac{x^2}{n^2}}

Recall that: 0 1 f ( x ) d x = lim n x = 1 n 1 n f ( x n ) \int^1_0 f(x)\,dx = \lim_{n \to \infty} \displaystyle \sum_{x=1}^n \frac {1}{n} f({\frac {x}{n}})

Therefore lim n x = 1 n 1 n 1 x 2 n 2 = 0 1 1 x 2 d x \lim_{n \to \infty} \displaystyle \sum_{x=1}^n \frac {1}{n} \sqrt{1 - \frac{x^2}{n^2}} = \int^1_0 ∣\sqrt{1-x^2}∣\,dx

The equation y = 1 x 2 y = \sqrt{1-x^2} can be rearranged to x 2 + y 2 = 1 x^2 + y^2 = 1

Therefore 0 1 1 x 2 d x \int^1_0 ∣\sqrt{1-x^2}∣\,dx is equal to the area of a quarter circle of radius 1.

π 4 \boxed{\frac {\pi}{4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...