n → ∞ lim ( n 2 1 ( n + 1 ) ( n − 1 ) + n 2 1 ( n + 2 ) ( n − 2 ) + ⋯ + n 2 1 ( n + n ) ( n − n ) ) = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
n → ∞ lim ( n 2 1 ( n + 1 ) ( n − 1 ) + n 2 1 ( n + 2 ) ( n − 2 ) + ⋯ + n 2 1 ( n + n ) ( n − n ) ) = ?
This can be expressed as n → ∞ lim x = 1 ∑ n n 2 1 ( n + x ) ( n − x )
n → ∞ lim x = 1 ∑ n n 2 1 n 2 − x 2
n → ∞ lim x = 1 ∑ n n 1 n 2 1 ( n 2 − x 2 )
n → ∞ lim x = 1 ∑ n n 1 1 − n 2 x 2
Recall that: ∫ 0 1 f ( x ) d x = n → ∞ lim x = 1 ∑ n n 1 f ( n x )
Therefore n → ∞ lim x = 1 ∑ n n 1 1 − n 2 x 2 = ∫ 0 1 ∣ 1 − x 2 ∣ d x
The equation y = 1 − x 2 can be rearranged to x 2 + y 2 = 1
Therefore ∫ 0 1 ∣ 1 − x 2 ∣ d x is equal to the area of a quarter circle of radius 1.
4 π