Limit + Summation = Integration (2)

Calculus Level 3

lim n k = 1 n e k n + e k n n 11 e 2 k n e 2 k n = sin 1 ( e a e a b ) \large \lim_{n\rightarrow\infty}\sum_{k=1}^{n}\frac{e^{\frac{k}{n}}+e^{-\frac{k}{n}}}{n\sqrt{11-e^{\frac{2k}{n}}-e^{-\frac{2k}{n}}}} = \sin^{-1}{\left(\frac{e^{a}-e^{-a}}{b}\right)}

If a a and b b above are positive integers, find a + b a+b .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jul 20, 2017

lim n k = 1 n e k n + e k n n 11 e 2 k n e 2 k n = 0 1 e x + e x 11 e 2 x e 2 x d x = 0 e e 1 d y 9 y 2 = sin 1 ( e e 1 3 ) \lim_{n \to \infty} \sum_{k=1}^n \frac{e^{\frac{k}{n}} + e^{\frac{-k}{n}}}{n\sqrt{11 - e^{\frac{2k}{n}} - e^{-\frac{2k}{n}}}} \; = \; \int_0^1 \frac{e^x + e^{-x}}{\sqrt{11 - e^{2x} - e^{-2x}}}\,dx \; = \; \int_0^{e - e^{-1}} \frac{dy}{\sqrt{9 - y^2}} \; = \; \sin^{-1}\left(\frac{e - e^{-1}}{3}\right) using a Riemann sum and the substitution y = e x e x y = e^x - e^{-x} . The answer is 1 + 3 = 4 1 + 3 = \boxed{4} .

Aaron Zhang
Jan 26, 2019

0 1 e x + e x 9 ( e x e x ) 2 d x \int_0^1{\frac{e^x+e^{-x}}{\sqrt {9-(e^x-e^{-x})^2}}dx}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...