Limit + Summation = Integration

Calculus Level 5

lim n k = 1 n n 2 n 3 + k 3 = a π + ln b c \large \lim_{n\rightarrow\infty}\sum_{k=1}^{n}\frac{n^2}{n^3+k^3} = \frac{\sqrt{a}\pi+\ln{b}}{c}

If a a , b b and c c are positive integers and a a is square-free, find a + b + c a+b+c .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

By Riemann Sums we have: S = lim n k = 1 n n 2 n 3 + k 3 = lim n 1 n k = 1 n 1 1 + ( k n ) 3 = 0 1 d x x 3 + 1 = 1 3 0 1 ( 1 x + 1 x 2 x 2 x + 1 ) d x = 1 3 0 1 d x x + 1 1 3 0 1 x 2 ( x 1 2 ) 2 + ( 3 2 ) 2 d x \begin{aligned} S &= \lim_{n\to\infty}\sum_{k=1}^{n}\dfrac{n^2}{n^3+k^3}\\ &= \lim_{n\to\infty}\dfrac{1}{n}\sum_{k=1}^{n}\dfrac{1}{1+\left(\frac{k}{n}\right)^3}\\ &= \int_{0}^{1} \dfrac{\mathrm{d}x}{x^3+1}\\ &= \dfrac{1}{3}\int_{0}^{1} \left(\dfrac{1}{x+1}-\dfrac{x-2}{x^2-x+1}\right) \mathrm{d}x\\ &= \dfrac{1}{3}\int_{0}^{1} \dfrac{\mathrm{d}x}{x+1} - \dfrac{1}{3} \int_{0}^{1} \dfrac{x-2}{\left(x-\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2} \mathrm{d}x \end{aligned} For the second integral make the change x 1 2 = 3 2 tan θ x-\frac{1}{2}=\frac{\sqrt{3}}{2}\tan \theta , then: S = 1 3 ln ( x + 1 ) x 1 = 0 x 2 = 1 + 1 3 π / 6 π / 6 ( 3 tan θ ) d θ = 1 3 ln ( 2 ) + 1 3 ( 3 θ + ln ( cos θ ) ) θ 1 = π / 6 θ 2 = π / 6 = 1 3 ln ( 2 ) + 1 3 ( 3 π 3 ) = 3 ln ( 2 ) + 3 π 9 = 3 π + ln ( 8 ) 9 \begin{aligned} S &= \dfrac{1}{3}\ln(x+1)\Big|_{x_1=0}^{x_2=1} + \dfrac{1}{3} \int\limits_{-\pi/6}^{\pi/6} (\sqrt{3}-\tan \theta)\mathrm{d}\theta\\ &= \dfrac{1}{3}\ln(2) + \dfrac{1}{3} \left(\sqrt{3}\theta+\ln(\cos \theta)\right) \Bigr|_{\theta_1=-\pi/6}^{\theta_2=\pi/6}\\ &= \dfrac{1}{3}\ln(2) + \dfrac{1}{3} \left(\dfrac{\sqrt{3}\pi}{3}\right)\\ &= \dfrac{3\ln(2) + \sqrt{3}\pi}{9}\\ &= \dfrac{\sqrt{3}\pi + \ln(8)}{9} \end{aligned} So, the answer is 3 + 8 + 9 = 20 3+8+9=\boxed{20} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...