Limit the limit

Calculus Level 2

Evaluate the limit.

lim x 0 1 cos x x 2 \large \lim_ {x\rightarrow 0} \dfrac{1-\cos~x}{x^2}

2 2 1 2 -\dfrac{1}{2} 0 0 1 2 \dfrac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let f ( x ) = 1 cos x f(x)=1-\cos~x and g ( x ) = x 2 g(x)=x^2 . Since, lim x 0 f ( x ) g ( x ) = 0 0 \large \lim_ {x\rightarrow 0} \dfrac{f(x)}{g(x)}=\dfrac{0}{0} , we can use the L'Hospital's Rule

lim x 0 1 cos x x 2 \large \lim_ {x\rightarrow 0} \dfrac{1-\cos~x}{x^2}

= lim x 0 sin x 2 x = 0 0 \large= \lim_ {x\rightarrow 0} \dfrac{\sin~x}{2x}=\dfrac{0}{0} \implies use the L'Hospital's Rule again

= lim x 0 cos x 2 \large=\lim_ {x\rightarrow 0} \dfrac{\cos~x}{2}

= cos 0 2 \large=\dfrac{\cos~0}{2}

= = 1 2 \large \boxed{\dfrac{1}{2}}

L'Hopital's Rule *

Zach Abueg - 3 years, 11 months ago
Sándor Daróczi
Jul 8, 2017

Using lim x 0 sin x x = 1 \lim_{x \to 0} \frac{\sin x}{x} = 1 we obtain

lim x 0 1 cos x x 2 = lim x 0 ( 1 cos x ) ( 1 + cos x ) x 2 ( 1 + cos x ) = lim x 0 1 ( cos x ) 2 x 2 ( 1 + cos x ) = lim x 0 ( sin x ) 2 x 2 ( 1 + cos x ) = lim x 0 ( sin x x ) 2 1 1 + c o s x = 1 2 1 1 + c o s 0 = 1 2 \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)} = \lim_{x \to 0} \frac{1 - (\cos x)^2}{x^2(1 + \cos x)} = \lim_{x \to 0} \frac{(\sin x)^2}{x^2(1 + \cos x)} = \lim_{x \to 0} (\frac{\sin x}{x})^2 \frac{1}{1+cos x} = 1^2 \frac{1}{1+cos 0} = \frac{1}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...