Limit till infinity

Calculus Level 5

lim n sin π 2 n sin 2 π 2 n sin ( n 1 ) π 2 n n = ? \lim_{n \rightarrow \infty} \sqrt [n] {\sin{\dfrac{\pi}{2n}}\sin{\dfrac{2\pi}{2n}}\cdots\sin{\dfrac{(n-1)\pi}{2n}}} = \ ?


The answer is 0.5000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kunal Gupta
Apr 8, 2015

Let L = lim n sin π 2 n sin 2 π 2 n sin ( n 1 ) π 2 n n L = \lim_{n \rightarrow \infty} \sqrt [n] {\sin{\dfrac{\pi}{2n}}\sin{\dfrac{2\pi}{2n}}\cdots\sin{\dfrac{(n-1)\pi}{2n}}} Taking Logarithm on both sides, ln L = lim n 1 n r = 1 n 1 ln ( sin r π 2 n ) \ln{L}= \lim_{n \rightarrow \infty} \dfrac{1}{n}\displaystyle \sum_{r=1}^{n-1}\ln { \left(\sin{\dfrac{r\pi}{2n}} \right)} Using, Riemann Sums, the above can be approximated to, ln L = 0 1 ln ( sin ( π x 2 ) ) d x = ln 2 \ln{L} = \displaystyle \int_{0}^{1} \ln{\left(\sin{\left(\dfrac{\pi x}{2} \right)}\right)}\text{d}x \\ = -\ln{2} So, L = e ln 2 = 1 2 L= e^{-\ln{2}} = \boxed{\large { \dfrac{1}{2}}}

Moderator note:

Great!

Same here. I have posted a question of similar type.

Vishwak Srinivasan - 6 years, 1 month ago

The problem was good .But the fascinating part was this solution.. @Upanshu Gupta

Krishna Shankar - 5 years, 11 months ago

Log in to reply

Thanks @KRISHNA SHANKAR

Kunal Gupta - 5 years, 11 months ago

nice solution did it the same the way

pawan dogra - 5 years, 11 months ago

Nice approach done here.

Prithwish Mukherjee - 2 years ago
Rajdeep Brahma
Apr 4, 2017

Let 1,a1,a2,.....,a(n-1) be the roots of z^n=1
(z^n)-1=(z-1)(z-a1)...(z-a(n-1))
So,(z-a1)(z-a2)....(z-a(n-1))=z^(n-1)+z^(n-2)+...+z+1
Set z=1, (1-a1)(1-a2)...(1-a(n-1))=n
I1-a1II1-a2I...I1-a(n-1)I=n
Prod of r=1 to n-1((1-cos 2 r p i n \frac{2rpi}{n} )^2+(sin 2 r p i n \frac{2rpi}{n} ^2))^0.5=n
Prod of r=1 to n-1 2sin r p i n \frac{rpi}{n} =n
(sin p i n \frac{pi}{n} )...(sin ( n 1 ) p i n \frac{(n-1)pi}{n} )= n 2 ( n 1 ) \frac{n}{2^(n-1)}
From here use lim n^(1/n)=1 to conclude the limit= 1 2 \frac{1}{2}



0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...