Limit to 0

Calculus Level 3

lim x 0 0 x 1 + cos t d t x = ? \lim_{x \to 0} \frac{\displaystyle \int_0^x \sqrt{1+\cos t}\ dt}x = ?

2 \sqrt{2} 2 -\sqrt{2} 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vincent Moroney
Jul 10, 2018

Let f ( x ) = 0 x 1 + cos ( t ) d t f(x) = \displaystyle \int_0^x \sqrt{1+\cos(t)}\,dt . Then we have that the limit is in the form lim x 0 f ( x ) f ( 0 ) x 0 lim x a f ( x ) f ( a ) x a = f ( a ) . \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} \Rightarrow \lim_{x\to a}\frac{f(x)-f(a)}{x-a} = f'(a). So we can easily evaluate the limit f ( 0 ) = lim x 0 f ( x ) f ( 0 ) x 0 = d d x x = 0 0 x 1 + cos ( t ) d t = 1 + cos ( x ) x = 0 = 2 \begin{aligned} f'(0) = & \lim_{x\to0}\frac{f(x)-f(0)}{x-0}\\ =& \frac{d}{dx}\Big|_{x=0} \int_0^x \sqrt{1+\cos(t)}\,dt \\ = & \sqrt{1+\cos(x)}\Big|_{x=0} \\ = & \boxed{\sqrt{2}} \end{aligned}

Relevant wiki: L'Hopital's Rule - Basic

L = lim x 0 0 x 1 + cos t d t x A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 0 1 + cos x 1 Differentiate up and down w.r.t. x . = 2 \begin{aligned} L & = \lim_{x \to 0} \frac {\displaystyle \int_0^x \sqrt{1+\cos t}\ dt}x & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \frac {\sqrt{1+\cos x}}1 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x. \\ & = \boxed{\sqrt 2} \end{aligned}

integration between 0 and 0 is 0 and you use hospital rule to solve the lim right

Nahom Assefa - 2 years, 10 months ago

Log in to reply

Yes, integration from 0 to 0 is 0.

Chew-Seong Cheong - 2 years, 10 months ago
Moch Abdul Aziz
Jul 7, 2018

lim x 0 0 x 1 + cos t d t x \lim_{x\to0}\frac{\int_0^x \sqrt{1+\cos t}dt}{x} = lim x 0 0 x cos 2 ( 1 2 t ) + sin 2 ( 1 2 t ) + cos t d t x \lim_{x\to0}\frac{\int_0^x \sqrt{\cos^2 (\frac{1}{2} t) + \sin^2 (\frac{1}{2} t)+\cos t}dt}{x} = lim x 0 0 x cos 2 ( 1 2 t ) + sin 2 ( 1 2 t ) + cos 2 ( 1 2 t ) sin 2 ( 1 2 t ) d t x \lim_{x\to0}\frac{\int_0^x \sqrt{\cos^2 (\frac{1}{2} t) + \sin^2 (\frac{1}{2} t)+\cos^2 (\frac{1}{2} t) - \sin^2 (\frac{1}{2} t)}dt}{x} = lim x 0 0 x 2 cos 2 ( 1 2 t ) d t x \lim_{x\to0}\frac{\int_0^x \sqrt{2\cos^2(\frac{1}{2}t)}dt}{x} = lim x 0 0 x 2 cos ( 1 2 t ) d t x \lim_{x\to0}\frac{\int_0^x \sqrt{2}\cos(\frac{1}{2}t)dt}{x} = lim x 0 2 2 sin ( 1 2 t ) 0 x x \lim_{x\to0}\frac{2\sqrt{2}\sin(\frac{1}{2}t)|_0^x}{x} = lim x 0 2 2 sin ( 1 2 x ) x \lim_{x\to0}\frac{2\sqrt{2}\sin(\frac{1}{2}x)}{x} = 2 2 × 1 2 2\sqrt{2}\times\frac{1}{2} = 2 \sqrt{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...