limit to Singularity

Calculus Level 4

lim x 0 ( 1 + e 1 x 2 tan 1 1 x 2 + x e 1 x 2 sin 1 x 4 ) e 1 x 2 = ? \lim_{x \rightarrow 0}\left( 1+e^{-\frac{1}{x^{2}}}\tan^{-1}\dfrac{1}{x^{2}} + xe^{-\frac{1}{x^{2}}}\sin \dfrac{1}{x^{4}} \right) ^{e^{\frac{1}{x^{2}}}} = \ ?


The answer is 4.81047.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
May 4, 2015

It is of the form 1 1^{\infty}

so

e lim x 0 ( 1 + e 1 x 2 t a n 1 1 x 2 + x e 1 x 2 s i n 1 x 4 1 ) e 1 x 2 e^{\large {\displaystyle \lim_{x\to 0} (1+e^{\frac{-1}{x^{2}}}tan^{-1}\frac{1}{x^{2}}+xe^{\frac{-1}{x^{2}}}sin\frac{1}{x^{4}}-1)e^{\frac{1}{x^{2}}}}}

e lim x 0 ( e 1 x 2 t a n 1 1 x 2 + x e 1 x 2 s i n 1 x 4 ) e 1 x 2 e^{\large {\displaystyle \lim_{x\to 0} (e^{\frac{-1}{x^{2}}}tan^{-1}\frac{1}{x^{2}}+xe^{\frac{-1}{x^{2}}}sin\frac{1}{x^{4}})e^{\frac{1}{x^{2}}}}}

cancel out term e 1 x 2 \large{e^{\frac{1}{x^{2}}}}

we are left with

e lim x 0 ( t a n 1 1 x 2 + x s i n 1 x 4 ) e^{\large {\displaystyle \lim_{x\to 0} (tan^{-1}\frac{1}{x^{2}}+xsin\frac{1}{x^{4}})}}

now lim x 0 t a n 1 1 x 2 π 2 \large {\displaystyle \lim_{x\to 0} tan^{-1}\frac{1}{x^{2}}\to \frac{\pi}{2}}

and lim x 0 x s i n 1 x 4 0 \large {\displaystyle \lim_{x\to 0} xsin\frac{1}{x^{4}} \to 0}

becoz it can be interpreted as 0 × v a l u e b e t w e e n 1 a n d 1 0\times value~between ~-1~and~1 which is zero.

hence the answer is

e π 2 = 4.81 \huge{\boxed{e^{\frac{\pi}{2}}=4.81}}

nice problem @Upanshu Gupta

Tanishq Varshney - 6 years, 1 month ago

Log in to reply

Thank you @Tanishq Varshney , my maths sir in coaching gave it to us

Kunal Gupta - 6 years, 1 month ago

Log in to reply

at least u can do a favour by upvoting the solution becoz it took a lot of time

Tanishq Varshney - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...