limit to the power limit

Calculus Level 2

lim x ( ( x + 1 ) x + 2 x + 1 x x + 1 x ) = ? \Large \lim_{x \to \infty} \left((x+1)^{\frac {x+2}{x+1}} - x^{\frac {x+1}x}\right) = ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let the above limit be Y Y

Y = lim x ( ( x + 1 ) 1 + 2 x 1 + 1 x ( x ) 1 + 1 x 1 ) Y = \displaystyle \lim _{x \rightarrow \infty} \begin{pmatrix} (x +1)^{\frac{1 + \frac 2x}{1 + \frac 1x}} - (x) ^{\frac {1 + \frac 1x}{1}} \end{pmatrix}

Y = lim x ( ( x + 1 ) 1 + 2 1 + 1 ( x ) 1 + 1 1 ) Y = \displaystyle \lim _{x \rightarrow \infty} \begin{pmatrix} ( x +1)^{\frac{ 1 + \frac 2\infty}{1 + \frac 1\infty}} - (x)^{\frac {1 + \frac 1\infty}{1}} \end{pmatrix}

Y = ( ( x + 1 ) 1 1 ( x ) 1 1 ) = ( x + 1 x ) = 1 Y = ((x +1)^{\frac 11} - (x) ^{\frac 11}) = (x +1 - x) = \boxed {1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...