Limit + Trignometry

Algebra Level 3

f ( n ) = cot 2 π n + cot 2 2 π n + cot 2 3 π n + + cot 2 ( n 1 ) π n f\left( n \right) =\cot^2 \frac \pi n + \cot^2\frac {2\pi}n + \cot^2 \frac {3\pi}n + \cdots + \cot^2 \frac {(n-1)\pi}n

Let f ( x ) f(x) be defined as above, for n > 1 N n > 1 \in \mathbb N . Then lim n 3 f ( n ) ( n + 1 ) ( n + 2 ) = p q \displaystyle \lim_{n \to \infty} \frac {3f(n)}{(n+1)(n+2)} = \frac pq , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Manan Agrawal
May 18, 2018

Let

x = i . c o t k π n x=-i.cot\frac { k\pi }{ n }

x + 1 x 1 = e i 2 π n \large\large\large\large\therefore \quad \frac { x+1 }{ x-1 } ={ e }^{ i\frac { 2\pi }{ n } }

( x + 1 x 1 ) n = 1 \large\Rightarrow \quad { \left( \frac { x+1 }{ x-1 } \right) }^{ n }=1

( x + 1 ) n ( x 1 ) n = 0 \large\therefore \quad { (x+1) }^{ n }-{ (x-1) }^{ n }=0

C 1 x n 1 + C 3 x n 3 + . . . . + C n x 0 = 0 \therefore \quad { C }_{ 1 }{ x }^{ n-1 }+{ C }_{ 3 }{ x }^{ n-3 }+....+{ C }_{ n }{ x }^{ 0 }=0

Note that root of this equation is i . c o t ( k π n ) -i.cot\left( \frac { k\pi }{ n } \right)

k = 1 n 1 ( i . c o t k π n ) 2 = ( k = 1 n 1 ( i . c o t k π n ) 2 ) 2 1 p q ( n 1 ) ( ( i . c o t p π n ) . ( i . c o t q π n ) ) \therefore \quad \displaystyle \sum _{ k=1 }^{ n-1 }{ { \left( i.cot\frac { k\pi }{ n } \right) }^{ 2 } } =(\sum _{ k=1 }^{ n-1 }{ { \left( -i.cot\frac { k\pi }{ n } \right) }^{ 2 } } )-2\sum _{ 1\le p \le }{ \sum _{ q\le (n-1) }{ \left( \left( i.cot\frac { p\pi }{ n } \right) .\left( i.cot\frac { q\pi }{ n } \right) \right) } }

= 0 2. C 3 C 1 \large\qquad \qquad \qquad \qquad \qquad =\quad 0-\frac { 2.{ C }_{ 3 } }{ { C }_{ 1 } }

f ( n ) = ( n 1 ) ( n 2 ) 3 \large\large\therefore \quad \boxed { f\left( n \right) =\frac { (n-1)(n-2) }{ 3 } }

lim n 3 f ( n ) ( n + 1 ) ( n + 2 ) = 3 ( ( n 1 ) ( n 2 ) 3 ) ( n + 1 ) ( n + 2 ) = 1 p = 1 , q = 1 i . e p + q = 2 \displaystyle \lim _{ n\to \infty } \frac { 3f(n) }{ (n+1)(n+2) } =\frac { 3\left( \frac { (n-1)(n-2) }{ 3 } \right) }{ (n+1)(n+2) } =1\\ \therefore \quad p=1,q=1\quad \\ i.e\quad \boxed { p+q=2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...