Limit Values

Calculus Level 2

Suppose f ( x ) = x 4 + a x 2 + b x f(x) = x^4 + ax^2 + bx satisfies the following two conditions:

lim x 2 f ( x ) f ( 2 ) x 2 = 4 , lim x 1 f ( x ) f ( 1 ) x 2 1 = 9. \lim_{x \to 2} \frac{f(x)-f(2)}{x-2} = 4,\quad \lim_{x \to 1} \frac{f(x)-f(1)}{x^2-1} = 9.\

What is the value of b a ? b-a?

55 55 66 66 77 77 88 88

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Daniel Ferreira
Feb 22, 2015

Sabe-se que lim x x o f ( x ) f ( x o ) x x o = f ( x ) \lim_{x \to x_o} \frac{f(x)-f(x_o)}{x - x_o} = f'(x) ; inclusive que f ( x ) = 4 x 3 + 2 a x + b f'(x) = 4x^3 + 2ax + b .

Daí, f ( 2 ) = 4 f'(2) = 4 e f ( 1 ) = ( x + 1 ) 9 f'(1) = (x + 1) \cdot 9 , pois ( x 1 ) = x 2 1 x + 1 (x - 1) = \frac{x^2 - 1}{x + 1}

Condição I:

f ( 2 ) = 32 + 4 a + b 4 a + b + 32 = 4 4 a + b = 28 f'(2) = 32 + 4a + b \\ 4a + b + 32 = 4 \\ \boxed{4a + b = - 28}

Condição II:

f ( 1 ) = 4 + 2 a + b ( 1 + 1 ) 9 = 4 + 2 a + b 18 = 4 + 2 a + b 2 a + b = 14 f'(1) = 4 + 2a + b \\ (1 + 1) \cdot 9 = 4 + 2a + b \\ 18 = 4 + 2a + b \\ \boxed{2a + b = 14}

Resolvendo o sistema obtido a partir das condições acima,

{ 4 a + b = 28 2 a + b = 14 × ( 1 4 a 2 a + b b = 28 14 2 a = 42 a = 21 \begin{cases} 4a + b = - 28 \\ 2a + b = 14 \;\; \times (- 1 \end{cases} \\ --------- \\ 4a - 2a + b - b = - 28 - 14 \\ 2a = - 42 \\ \boxed{a = - 21}

Com efeito,

2 a + b = 14 42 + b = 14 b = 56 2a + b = 14 \\ - 42 + b = 14 \\ \boxed{b = 56}

Logo,

b a = 56 ( 21 ) b a = 56 + 21 b a = 77 b - a = 56 - (- 21) \\ b - a = 56 + 21 \\ \boxed{\boxed{b - a = 77}} .

you will get the same equations using L'Hopital's rule.

Krishna Ramesh - 6 years, 1 month ago

Log in to reply

Na época, ainda não havia aprendido o assunto.

Daniel Ferreira - 6 years, 1 month ago
Anh Vũ
Mar 10, 2015

Transform:

f ( x ) f ( 2 ) x 2 = x 4 + a x 2 + b x ( 2 4 + 2 2 . a + 2. b ) x 2 = ( x 3 + 2 x 2 + 4 x + 8 ) ( x 2 ) + a ( x 2 ) ( x + 2 ) + b ( x 2 ) x 2 = x 3 + 2 x 2 + 4 x + 8 + a ( x + 2 ) + b ( w i t h x 2 ) \frac { f(x)-f(2) }{ x-2 } =\frac { x^{ 4 }+ax^{ 2 }+bx-(2^{ 4 }+2^{ 2 }.a+2.b) }{ x-2 } =\frac { (x^{ 3 }+2x^{ 2 }+4x+8)(x-2)+a(x-2)(x+2)+b(x-2) }{ x-2 } \\=x^{ 3 }+2x^{ 2 }+4x+8+a(x+2)+b\quad (with \quad x\neq2)

So,

l i m x 2 f ( x ) f ( 2 ) x 2 = 2 3 + 2. 2 2 + 4.2 + 8 + a ( 2 + 2 ) + b = 4 a + b + 32 = 4 4 a + b = 28 ( 1 ) \underset{x\to2}{lim}\frac { f(x)-f(2) }{ x-2 } =2^{ 3 }+2.2^{ 2 }+4.2+8+a(2+2)+b=4a+b+32=4 \\ \Leftrightarrow \boxed{4a+b=-28} (1)

Transform:

f ( x ) f ( 1 ) x 2 1 = ( x 4 + a x 2 + b x ) ( 1 + a + b ) x 2 1 = ( x 2 1 ) ( x 2 + 1 ) + a ( x 2 1 ) + b ( x 1 ) x 2 1 = x 2 + 1 + a + b x + 1 ( w i t h x ± 1 ) \frac { f(x)-f(1) }{ x^2-1 } = \frac{(x^4+ax^2+bx)-(1+a+b)}{x^2-1}=\frac{(x^2-1)(x^2+1)+a(x^2-1)+b(x-1)}{x^2-1}\\=x^2+1+a+\frac{b}{x+1}\quad(with\quad x\neq\pm 1)

So,

l i m x 1 f ( x ) f ( 1 ) x 2 1 = 1 2 + 1 + a + b 1 + 1 = 2 + a + b 2 = 9 a + b 2 = 7 ( 2 ) \underset{x\to1}{lim}\frac { f(x)-f(1) }{ x^2-1 } = 1^2+1+a+\frac{b}{1+1} = 2+a+\frac{b}{2}=9 \\\Leftrightarrow \boxed{a+\frac{b}{2}=7} (2)

Solve the system of equation (1)(2), we have a = 21 , b = 56 a = -21,b = 56 , so b a = 77 \boxed{b-a = 77}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...