Suppose f ( x ) = x 4 + a x 2 + b x satisfies the following two conditions:
x → 2 lim x − 2 f ( x ) − f ( 2 ) = 4 , x → 1 lim x 2 − 1 f ( x ) − f ( 1 ) = 9 .
What is the value of b − a ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
you will get the same equations using L'Hopital's rule.
Log in to reply
Na época, ainda não havia aprendido o assunto.
Transform:
x − 2 f ( x ) − f ( 2 ) = x − 2 x 4 + a x 2 + b x − ( 2 4 + 2 2 . a + 2 . b ) = x − 2 ( x 3 + 2 x 2 + 4 x + 8 ) ( x − 2 ) + a ( x − 2 ) ( x + 2 ) + b ( x − 2 ) = x 3 + 2 x 2 + 4 x + 8 + a ( x + 2 ) + b ( w i t h x = 2 )
So,
x → 2 l im x − 2 f ( x ) − f ( 2 ) = 2 3 + 2 . 2 2 + 4 . 2 + 8 + a ( 2 + 2 ) + b = 4 a + b + 3 2 = 4 ⇔ 4 a + b = − 2 8 ( 1 )
Transform:
x 2 − 1 f ( x ) − f ( 1 ) = x 2 − 1 ( x 4 + a x 2 + b x ) − ( 1 + a + b ) = x 2 − 1 ( x 2 − 1 ) ( x 2 + 1 ) + a ( x 2 − 1 ) + b ( x − 1 ) = x 2 + 1 + a + x + 1 b ( w i t h x = ± 1 )
So,
x → 1 l im x 2 − 1 f ( x ) − f ( 1 ) = 1 2 + 1 + a + 1 + 1 b = 2 + a + 2 b = 9 ⇔ a + 2 b = 7 ( 2 )
Solve the system of equation (1)(2), we have a = − 2 1 , b = 5 6 , so b − a = 7 7
Problem Loading...
Note Loading...
Set Loading...
Sabe-se que lim x → x o x − x o f ( x ) − f ( x o ) = f ′ ( x ) ; inclusive que f ′ ( x ) = 4 x 3 + 2 a x + b .
Daí, f ′ ( 2 ) = 4 e f ′ ( 1 ) = ( x + 1 ) ⋅ 9 , pois ( x − 1 ) = x + 1 x 2 − 1
Condição I:
f ′ ( 2 ) = 3 2 + 4 a + b 4 a + b + 3 2 = 4 4 a + b = − 2 8
Condição II:
f ′ ( 1 ) = 4 + 2 a + b ( 1 + 1 ) ⋅ 9 = 4 + 2 a + b 1 8 = 4 + 2 a + b 2 a + b = 1 4
Resolvendo o sistema obtido a partir das condições acima,
{ 4 a + b = − 2 8 2 a + b = 1 4 × ( − 1 − − − − − − − − − 4 a − 2 a + b − b = − 2 8 − 1 4 2 a = − 4 2 a = − 2 1
Com efeito,
2 a + b = 1 4 − 4 2 + b = 1 4 b = 5 6
Logo,
b − a = 5 6 − ( − 2 1 ) b − a = 5 6 + 2 1 b − a = 7 7 .