Limit with Integration - 3

Calculus Level 5

Find lim n n 0 1 cos ( n x ) cosh 1 ( 1 x ) d x \large \lim_{n\to\infty}n\int_0^1\cos(n x) \cosh^{-1}\left(\frac{1}{x}\right)dx

0 0 π 8 \frac{\pi}{8} π 4 \frac{\pi}{4} 1 1 π 2 \frac{\pi}{2} π \pi \infty Doesn't exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Carsten Meyer
Jun 1, 2021

Here is another solution without dominated convergence. We use integration by parts to simplify the integral: I n : = n 0 1 cos ( n x ) ar cosh ( 1 x ) d x = sin ( n x ) ar cosh ( 1 x ) 0 1 0 1 sin ( n x ) 1 x 2 1 x 2 1 d x = l’H. 0 0 + 0 1 sin ( n x ) x 1 x 2 d x \begin{aligned} I_n&:=n\int_0^1\cos(nx)\operatorname{ar~cosh}\left(\frac{1}{x}\right)\:dx=\left. \sin(nx)\operatorname{ar~cosh}\left(\frac{1}{x}\right) \right|_0^1 - \int_0^1\sin(nx)\cdot\frac{-1}{x^2\sqrt{\frac{1}{x^2}-1}}\:dx\underset{\text{l'H.}}{=}0-0+\int_0^1\frac{\sin(nx)}{x\sqrt{1-x^2}}\:dx \end{aligned} We add the zero ± 1 x \pm\frac{1}{x} to split the pole from the remaining integral. Then we substitute y : = n x y:=nx in the first part: I n = 0 1 sin ( n x ) x d x + 0 1 ( 1 x 1 x 2 1 x ) = : f ( x ) sin ( n x ) d x = : 0 n sin ( y ) y d y + 0 1 f ( x ) sin ( n x ) d x ( ) \begin{aligned} I_n &=\int_0^1\frac{\sin(nx)}{x}\:dx + \int_0^1\underset{=:f(x)}{\underbrace{ \left(\frac{1}{x\sqrt{1-x^2}}-\frac{1}{x}\right) }}\sin(nx)\:dx=:\int_0^n\frac{\sin(y)}{y}\:dy + \int_0^1 f(x)\sin(nx)\:dx &&&&&(*) \end{aligned} We take a closer look at the remainder f ( x ) f(x) to check its behavior on the integration domain: x [ 0 ; 1 ) : f ( x ) = 1 1 x 2 x 1 x 2 = x 2 x 1 x 2 ( 1 x 2 + 1 ) = x 1 x 2 ( 1 x 2 + 1 ) 1 1 x 2 absolutely integrable \begin{aligned} x&\in[0;\:1):& |f(x)|&=\frac{1 - \sqrt{1-x^2}}{|x|\sqrt{1-x^2}}=\frac{x^2}{|x|\sqrt{1-x^2}\left(\sqrt{1-x^2}+1\right)}=\frac{|x|}{\sqrt{1-x^2}\left(\sqrt{1-x^2}+1\right)}\leq\frac{1}{\sqrt{1-x^2}} &\text{absolutely integrable} \end{aligned} As f ( x ) f(x) is absolutely integrable on [ 0 ; 1 ] [0;\:1] , the second integral in ( ) (*) converges to zero by Riemann-Lebesgue's Lemma (the version concerning Fourier-Coefficients). The first integral on the other hand can be solved by Differentiation under the integral sign or contour integration: lim n I n = 0 sin ( y ) y d y + lim n 0 1 f ( x ) sin ( n x ) d x = π 2 + 0 = π 2 \lim_{n\rightarrow\infty}I_n=\int_0^{\infty}\frac{\sin(y)}{y}\:dy + \lim_{n\rightarrow\infty}\int_0^1 f(x)\sin(nx)\:dx=\frac{\pi}{2} + 0=\boxed{\frac{\pi}{2}}

nice solution

Aman Rajput - 1 week, 4 days ago

Thanks^^ Just noticed the wiki-page on "Differentiation under the integral sign" lists the first integral as a counter-example (which is true for the wrong parameter choice), so I'll add a rough sketch of how to calculate the "Dirichlet-Integral": I ( t ) : = 0 sin ( y ) y e y t d y = : 0 f ( y , t ) d y , lim t I ( t ) = 0 , I ( 0 ) = ? ? I(t):=\int_0^\infty \frac{\sin(y)}{y}e^{-yt}\:dy=:\int_0^{\infty} f(y,\:t)\:dy,\qquad \lim_{t\rightarrow\infty}I(t)=0,\qquad I(0)=?? For t > 0 t>0 , one can use differentiation under the integral sign: I ( 1 ) ( t ) = 0 sin ( y ) e y t d y = { 0 e ( i t ) y d y } = { 1 i t } = 1 1 + t 2 I^{(1)}(t)=-\int_0^\infty \sin(y)e^{-yt}\:dy=-\Im\left\{\int_0^\infty e^{(i-t)y}\:dy\right\}=-\Im\left\{\frac{-1}{i-t}\right\}=-\frac{1}{1+t^2} The remaining integral is simple, and the boundary condition at t + t\rightarrow+\infty determines the integration constant: I ( t ) = arctg ( t ) + π 2 I ( 0 ) = π 2 I(t)=-\arctg(t)+\frac{\pi}{2}\quad\Rightarrow\quad I(0)=\frac{\pi}{2}


Rem.: The above is just a rough sketch - there are (at least) two details missing:

  • Why is I ( t ) I(t) continuous from above at t = 0 t=0 ?
  • Why are we allowed to use differentiation under the integral sign for an unbounded integration domain?

Carsten Meyer - 1 week, 4 days ago

Suppose that h < 1 2 t |h| < \tfrac12t , where t > 0 t > 0 , then e y ( t + h ) e y t h = y e y ( t + θ h ) y e 1 2 y t y > 0 \left| \frac{e^{-y(t+h)} - e^{-yt}}{h}\right| \; = \; \left|-ye^{-y(t+\theta h)}\right| \; \le \; ye^{-\frac12yt} \hspace{2cm} y > 0 (for some 0 < θ < 1 0 < \theta < 1 , while lim h 0 e y ( t + h ) e y t h = y e y t y > 0 \lim_{h \to 0}\frac{e^{-y(t+h)} - e^{-yt}}{h} \; = \; -ye^{-yt} \hspace{2cm} y > 0 Thus the DCT implies that lim h 0 I ( t + h ) I ( t ) h = lim h 0 0 e y ( t + h ) e y t h sin y y d y = 0 sin y e y t d y \lim_{h \to 0} \frac{I(t+h) - I(t)}{h} \; = \; \lim_{h \to 0} \int_0^\infty \frac{e^{-y(t+h)} - e^{-yt}}{h} \frac{\sin y}{y}\,dy \; = \; -\int_ 0^\infty \sin y \,e^{-yt}\,dy which proves differentiation under the integral sign here. As you say, this still leaves the matter of the continuity of I I at 0 0 .

To be honest, it is easier to evaluate the improper integral sin x x \frac{\sin x}{x} by integrating e i z z \frac{e^{iz}}{z} around the almost semicircular contour of radius R R in the upper half plane, with a small semicircular contour of radius ε \varepsilon avoiding the singularity at 0 0 . The fact that

0 sin x x d x = lim R ε 0 ε R sin x x d x = 1 2 π \int_0^\infty \frac{\sin x}{x}\,dx \; = \; \lim_{{R \to \infty} \atop {\varepsilon \to 0}} \int_\varepsilon^R \frac{\sin x}{x}\,dx \; = \; \tfrac12\pi is a matter of standard contour integration.

Mark Hennings - 1 week, 3 days ago

Continuity from above at t = 0 t=0 follows from "Leibniz' Convergence Criterium". Let ε > 0 \varepsilon>0 and choose

  • n N n\in\mathbb{N} large enough such that 2 n π < ε 3 \frac{2}{n\pi}<\frac{\varepsilon}{3}
  • t 0 t\geq 0 small enough such that 1 e n π t < ε 3 π n 1-e^{-n\pi t}<\frac{\varepsilon}{3\pi n}

Then we use the "triangle inequality" to estimate I ( 0 ) I ( t ) n π sin ( x ) x d x + n π sin ( x ) x e x t d x + 0 n π sin ( x ) x ( 1 e x t ) d x \begin{aligned} |I(0)-I(t)|&\leq \left| \int_{ n\pi}^{\infty}\frac{\sin(x)}{x}\:dx \right|+\left| \int_{n\pi}^\infty\frac{\sin(x)}{x}e^{-xt}\:dx \right|+\int_0^{n\pi}\left|\frac{\sin(x)}{x}\right|(1-e^{-xt})\:dx \end{aligned} With sin ( x ) x 1 |\frac{\sin(x)}{x}|\leq 1 and the choice for t t the third integral is smaller than ε 3 \frac{\varepsilon}{3} . We rewrite the first two integrals as alternating sums. A substitution y : = x k π y:=x-k\pi yields n π sin ( x ) x e x t d x = k = n k π ( k + 1 ) π sin ( x ) x e x t d x = k = n ( 1 ) k 0 π sin ( y ) y + k π e ( y + k π ) t d y = : k = n ( 1 ) k a k 0 < a k < 0 π sin ( y ) k π 1 d y = 2 k π \begin{aligned} \int_{n\pi}^\infty\frac{\sin(x)}{x}e^{-xt}\:dx &= \sum_{k=n}^{\infty}\int_{k\pi}^{(k+1)\pi}\frac{\sin(x)}{x}e^{-xt}\:dx = \sum_{k=n}^{\infty}(-1)^k\int_0^{\pi}\frac{\sin(y)}{y+k\pi}e^{-(y+k\pi)t}\:dy=:\sum_{k=n}^{\infty}(-1)^k a_k\\[.5em] 0&<a_k<\int_0^{\pi}\frac{\sin(y)}{k\pi}\cdot 1\:dy=\frac{2}{k\pi} \end{aligned} The sequence a k a_k is monotonically decreasing and converges to zero. By "Leibniz' Convergence Criterium" for alternating series, we get t 0 : n π sin ( x ) x e x t d x = k = n ( 1 ) k a k < a n < 2 n π < ε 3 t\geq 0:\qquad \left|\int_{n\pi}^{\infty} \frac{\sin(x)}{x}e^{-xt}\:dx\right|=\left|\sum_{k=n}^\infty (-1)^ka_k\right|<|a_n|<\frac{2}{n\pi}<\frac{\varepsilon}{3} Putting everything together, we have I ( 0 ) I ( t ) < ε |I(0)-I(t)|<\varepsilon

Carsten Meyer - 1 week, 3 days ago

Like I said, rather than all this, just use contour integration.

Mark Hennings - 1 week, 3 days ago

Log in to reply

Contour Integration is very much simple for this integral

Aman Rajput - 1 week, 3 days ago
Aman Rajput
May 31, 2021

By integration by parts 0 1 n cos ( n x ) cosh 1 ( 1 x ) d x = sin ( n x ) log ( 1 + 1 x 2 x ) 0 + 1 + 0 1 sin ( n x ) x 1 x 2 d x \int_{0}^{1}n\cos(nx)\cosh^{-1}\left(\frac{1}{x}\right)\,dx = \left.\sin(nx)\log\left(\frac{1+\sqrt{1-x^2}}{x}\right)\right|_{0^+}^{1}+\int_{0}^{1}\frac{\sin(nx)}{x\sqrt{1-x^2}}\,dx that equals 0 n sin ( x ) x 1 x 2 n 2 d x \int_{0}^{n}\frac{\sin(x)}{x\sqrt{1-\frac{x^2}{n^2}}}\,dx and by the dominated convergence theorem, as n n\to \infty the last integral approaches 0 sin ( x ) x d x = π 2 \int_{0}^{\infty}\frac{\sin(x)}{x}\,dx = \color{#0C6AC7}{\boxed{\frac{\pi}{2}}} as expected.

The Dominated Convergence Theorem seems to work only if the integration domain does not dependent on n n . How did you solve that issue in the second line from the bottom?

Carsten Meyer - 1 week, 4 days ago

Log in to reply

The DCT can apply when the limit varies, but you still need the limit integral to be Lebesgue integrable, and sin x x \tfrac{\sin x}{x} is not Lebesgue integrable over ( 0 , ) (0,\infty) .

Mark Hennings - 1 week, 3 days ago

Log in to reply

I see now - with variable integration domains S n S_n you could just define f ~ n ( x ) : = f n ( x ) χ S n ( x ) \tilde{f}_n(x):=f_n(x)\chi_{S_n}(x) and rewrite the integral over S n S_n as an integral over R \mathbb{R} . But then the (point-wise) limit of f ~ n ( x ) \tilde{f}_n(x) has to be Lebesgue integrable over R \mathbb{R} for a dominating function to exist, which is not the case here.

Thanks for the hint!

Carsten Meyer - 1 week, 3 days ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...