Limit with Integration -4

Calculus Level pending

lim α 0 + ( 2 3 α 3 4 π 3 α 1 x cosh ( π α x ) sinh 2 ( π α x ) x 2 1 d x ) \lim_{\alpha\to0^{+}}\left(\frac{2}{3\alpha^3}-\frac{4\pi}{3\alpha}\int_1^\infty\frac{x\cosh(\pi \alpha x)}{\sinh^2(\pi\alpha x)\sqrt{x^2-1}}dx\right)

Notations:

η ( 3 ) \eta(3) 2 3 η ( 3 ) \frac23\eta(3) ζ ( 2 ) \zeta(2) 4 3 η ( 3 ) \frac43\eta(3) 4 3 ζ ( 3 ) \frac43\zeta(3) η ( 2 ) \eta(2) 2 3 ζ ( 3 ) \frac23\zeta(3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aman Rajput
Jun 3, 2021

Let f : ( 0 , ) R , f \colon (0,\infty) \to \mathbb{R}, Consider the function as f ( α ) = 1 2 α 1 d x sinh ( π α x ) x 2 1 = x = cosh ( t ) 1 2 α 0 d t sinh ( π α cosh ( t ) ) = 1 2 α 0 [ 1 π α cosh ( t ) + 2 π α cosh ( t ) k = 1 ( 1 ) k π 2 k 2 + π 2 α 2 cosh 2 ( t ) ] d t = u = α sinh ( t ) 2 π 0 k = 1 ( 1 ) k 1 k 2 + α 2 + u 2 d u . \begin{aligned} f(\alpha) &= \frac{1}{2\alpha} - \int \limits_1^\infty \frac{\mathrm{d} x}{\sinh(\pi \alpha x) \sqrt{x^2 -1}} \stackrel{x = \cosh(t)}{=} \frac{1}{2 \alpha} - \int \limits_0^\infty \frac{\mathrm{d} t}{\sinh(\pi \alpha \cosh(t))} \\ &= \frac{1}{2 \alpha} - \int \limits_0^\infty \left[\frac{1}{\pi \alpha \cosh(t)} + 2 \pi \alpha \cosh(t) \sum \limits_{k=1}^\infty \frac{(-1)^k}{\pi^2 k^2 + \pi^2 \alpha^2 \cosh^2(t)}\right] \mathrm{d} t \\ &\!\!\!\!\!\!\!\!\stackrel{u = \alpha \sinh(t)}{=} \frac{2}{\pi} \int \limits_0^\infty \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{k^2 + \alpha^2 + u^2} \, \mathrm{d} u \, . \end{aligned} Here we have used the pole expansion of csch \operatorname{csch} and the elementary integral 0 sech ( t ) d t = π 2 \int_0^\infty \operatorname{sech}(t) \, \mathrm{d} t = \frac{\pi}{2} . Since the partial sums of the remaining alternating series (with terms decreasing in absolute value) are bounded by the first term, i. e. the integrable function u 1 1 + α 2 + u 2 u \mapsto \frac{1}{1 + \alpha^2 + u^2} , the dominated convergence theorem allows us to interchange summation and integration. We obtain f ( α ) = 2 π k = 1 ( 1 ) k 1 0 d u k 2 + α 2 + u 2 = k = 1 ( 1 ) k 1 k 2 + α 2 f(\alpha) = \frac{2}{\pi} \sum \limits_{k=1}^\infty (-1)^{k-1}\int \limits_0^\infty \frac{\mathrm{d} u}{k^2 + \alpha^2 + u^2} = \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{\sqrt{k^2 + \alpha^2}} for α > 0 \alpha > 0 . The series on the right-hand side converges uniformly on R \mathbb{R} , so it defines a continuous function of α \alpha on R \mathbb{R} . We can write, lim α 0 + f ( α ) = lim α 0 + k = 1 ( 1 ) k 1 k 2 + α 2 = k = 1 ( 1 ) k 1 k 2 + 0 2 = k = 1 ( 1 ) k 1 k = log ( 2 ) \lim_{\alpha \to 0^+} f(\alpha) = \lim_{\alpha \to 0^+} \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{\sqrt{k^2 + \alpha^2}} = \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{\sqrt{k^2 + 0^2}} = \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{k} = \log(2) Thus, our problem can be solved by observing that 2 3 α 3 4 π 3 α 1 x cosh ( π α x ) sinh 2 ( π α x ) x 2 1 d x = 4 3 α f ( α ) = 4 3 k = 1 ( 1 ) k 1 ( k 2 + α 2 ) 3 / 2 α 0 + 4 3 k = 1 ( 1 ) k 1 k 3 = 4 3 η ( 3 ) = ζ ( 3 ) . \begin{aligned} \frac{2}{3 \alpha^3} - \frac{4\pi}{3 \alpha} \int \limits_1^\infty \frac{x \cosh(\pi \alpha x)}{\sinh^2(\pi \alpha x) \sqrt{x^2-1}} \, \mathrm{d} x &= - \frac{4}{3 \alpha} f'(\alpha) = \frac{4}{3} \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{(k^2 + \alpha^2)^{3/2}} \\ &\!\!\!\stackrel{\alpha \rightarrow 0^+}{\longrightarrow} \frac{4}{3} \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{k^3} = \color{#0C6AC7}{\boxed{\frac{4}{3} \operatorname{\eta}(3) }}= \operatorname{\zeta}(3) \, . \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...