Limit with Integration

Calculus Level 4

Find:

lim n 1 n 1 d x x 2 ln ( 1 + x n ) \lim_{n \rightarrow \infty} \frac{1}{n} \int_{1}^{\infty} \frac{\mathrm dx}{x^2 \ln \left(1+ \frac x n \right)}


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aman Rajput
May 28, 2021

Since y 1 + y < log ( 1 + y ) < y \frac{y}{1+y}<\log(1+y)<y We can bound the integrand as shown: 1 x 3 < 1 n x 2 ln ( 1 + x / n ) < 1 n x 2 ( x / n ) / ( 1 + x / n ) = 1 x 3 ( 1 + x / n ) \frac{1}{x^3}<\frac{1}{nx^2\ln(1+x/n)}<\frac{1}{nx^2(x/n)/(1+x/n)}=\frac{1}{x^3}(1+x/n) By monotonicity, it satisfies 1 2 = 1 + 1 x 3 d x < 1 + 1 n x 2 ln ( 1 + x / n ) d x < 1 + 1 x 3 ( 1 + x / n ) d x = 1 2 + 1 n \color{#D61F06}{\frac{1}{2}} =\int_1^{+\infty}\frac{1}{x^3}\,\mathrm dx<\int_1^{+\infty}\frac{1}{nx^2\ln(1+x/n)}\,\mathrm dx<\int_1^{+\infty}\frac{1}{x^3}(1+x/n)\,\mathrm dx=\color{#3D99F6}{\frac{1}{2}+\frac{1}{n}} Take the limit and get the answer.

I have a solution without using inequalities.

William Ly - 2 weeks, 1 day ago

Hint: 1/x=integral of e^-xy from 0 to inf, dy

William Ly - 2 weeks, 1 day ago

My first answer was incorrect because I thought log \log was base 10 and not base e. Perhaps use ln \ln instead of log \log ?

Recall that lim n ( 1 + x n ) n = e x \lim_{n \to \infty} \left(1+\frac{x}{n}\right)^{n} = e^x . Thus, the natural logarithm of this equality yields lim n n ln ( 1 + x n ) = x \lim_{n \to \infty} n\ln\left(1+\frac{x}{n}\right)= x which, solving for ln ( 1 + x n ) \ln\left(1+\frac{x}{n}\right) gives lim n ln ( 1 + x n ) = x n \lim_{n \to \infty} \ln\left(1+\frac{x}{n}\right)=\frac{x}{n} .

We can now substitute this expression into the given integral and easily solve it.

lim n 1 n 1 1 x 2 ln ( 1 + x n ) d x \displaystyle \lim_{n \to \infty} \frac{1}{n}\int_{1}^{\infty}\frac{1}{x^{2}\ln\left(1+\frac{x}{n}\right)}dx

1 lim n 1 n 1 x 2 ln ( 1 + x n ) d x \displaystyle \int_{1}^{\infty}\lim_{n \to \infty} \frac{1}{n} \frac{1}{x^{2}\ln\left(1+\frac{x}{n}\right)}dx

1 1 x 3 d x \displaystyle \int_{1}^{\infty}\frac{1}{x^{3}}dx

lim a 1 2 a 2 + 1 2 = 1 2 \displaystyle \lim_{a \to \infty}-\frac{1}{2a^2} + \frac{1}{2} = \boxed{\frac{1}{2}}

How are you justifying the interchange of limit and intergration operators?. You would need to prove the uniform convergence of the integral in terms of the parameter n in order to do so. You can use the inequality that @Aman Rajput has used inorder to prove the uniform convergence by Weirestrass M test for integrals.(you'll only need the right hand side of the inequality). Only after that the interchange of limit and integral sign would make sense. Othwerwise your method is very good and quick.

Arghyadeep Chatterjee - 1 week, 6 days ago

Thanks. I've updated log ( ) \log(\, ) to ln ( ) . \ln( \, ) .

In the future, if you have concerns about a problem's wording/clarity/etc., you can report the problem. See how here .

Brilliant Mathematics Staff - 1 week, 6 days ago
Carsten Meyer
Jun 2, 2021

Define the sequence of functions f n ( x ) f_n(x) and compute its (point-wise) limit f ( x ) f(x) with "l'Hospital's Rule": f n : D : = [ 1 ; ) R , f n ( x ) : = 1 n x 2 ln ( 1 + x n ) = 1 x 3 x n ln ( 1 + x n ) lim n f n ( x ) = l’H. 1 x 3 = : f ( x ) \begin{aligned} f_n:&& D&:=[1;\:\infty)\rightarrow\mathbb{R}, &&&&& f_n(x)&:=\frac{1}{nx^2\ln\left(1+\frac{x}{n}\right)}=\frac{1}{x^3}\cdot\frac{\frac{x}{n}}{\ln\left(1+\frac{x}{n}\right)} &&&&&\left|\lim_{n\rightarrow\infty}f_n(x)\underset{\text{l'H.}}{=}\frac{1}{x^3}=:f(x)\right. \end{aligned} Find a dominating function g ( x ) g(x) using h 1 + h < ln ( 1 + h ) , h > 0 ( ) \frac{h}{1+h}<\ln(1+h),\quad h>0\quad (*) : x > 1 : f n ( x ) = f n ( x ) 1 x 2 1 n ln ( 1 + 1 n ) < ( ) 1 x 2 ( 1 + 1 n ) 2 x 2 = : g ( x ) integrable on D \begin{aligned} x&>1:&&& |f_n(x)|&=f_n(x)\leq \frac{1}{x^2}\cdot\frac{1}{n\ln\left(1+\frac{1}{n}\right)}\underset{(*)}{<}\frac{1}{x^2}\left(1+\frac{1}{n}\right)\leq\frac{2}{x^2}=:g(x)\text{ integrable on }D \end{aligned} Interchange limit and integration using Lebesgue's Dominated Convergence Theorem : lim n 1 f n ( x ) d x = 1 f ( x ) d x = [ 1 2 x 2 ] 1 = 1 2 \lim_{n\rightarrow\infty}\int_1^\infty f_n(x)\:dx=\int_1^\infty f(x)\:dx=\left[\frac{-1}{2x^2}\right]_1^{\infty}=\boxed{\frac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...