Limit with summations

Calculus Level 3

lim n lim m r = 1 n k = 1 m r m n 2 ( m 2 n 2 + k 2 ) ( n 2 + r 2 ) = α π β γ \large \lim_{n \to \infty} \lim_{m \to \infty} \sum_{r=1}^n \sum_{k = 1}^{mr} \frac {mn^2}{(m^2n^2+k^2)(n^2+r^2)} = \frac {\alpha \pi^\beta}\gamma

The equation above holds true for positive integer α \alpha , β \beta and γ \gamma , where α \alpha and γ \gamma are coprime integers. Find γ β α \gamma^{\beta^\alpha} .


The answer is 1024.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 27, 2018

Relevant wiki: Riemann Sums

L = lim n lim m r = 1 n k = 1 m r m n 2 ( m 2 n 2 + k 2 ) ( n 2 + r 2 ) Dividing up and down by m 2 n 2 = lim n lim m r = 1 n 1 n 2 + r 2 1 m k = 1 m r 1 1 + ( k m n ) 2 Using Riemann sums = lim n r = 1 n 1 n 2 + r 2 0 r 1 1 + x 2 n 2 d x lim n 1 n k = a b f ( k n ) = lim n a n b n f ( x ) d x = lim n r = 1 n 1 n 2 + r 2 n tan 1 x n 0 r = lim n r = 1 n n tan 1 r n n 2 + r 2 Dividing up and down by n 2 = lim n 1 n r = 1 n tan 1 r n 1 + r 2 n 2 Using Riemann sums again = 0 1 tan 1 x 1 + x 2 d x By integration by parts = ( tan 1 x ) 2 0 1 0 1 tan 1 x 1 + x 2 d x Note that 0 1 tan 1 x 1 + x 2 d x = L = 1 2 ( tan 1 x ) 2 0 1 = π 2 32 \begin{aligned} L & = \lim_{n \to \infty} \lim_{m \to \infty} \sum_{r=1}^n \sum_{k = 1}^{mr} \frac {mn^2}{(m^2n^2+k^2)(n^2+r^2)} & \small \color{#3D99F6} \text{Dividing up and down by }m^2n^2 \\ & = \lim_{n \to \infty} \lim_{m \to \infty} \sum_{r=1}^n \frac 1{n^2+r^2} \cdot \frac 1m \sum_{k = 1}^{mr} \frac 1{1+\left(\frac k{mn}\right)^2} & \small \color{#3D99F6} \text{Using Riemann sums} \\ & = \lim_{n \to \infty} \sum_{r=1}^n \frac 1{n^2+r^2} \int_0^r \frac 1{1+\frac {x^2}{n^2}}\ dx & \small \color{#3D99F6} \lim_{n \to \infty} \frac 1n \sum_{k = a}^b f\left(\frac kn\right) = \lim_{n \to \infty} \int_\frac an^\frac bn f(x) \ dx \\ & = \lim_{n \to \infty} \sum_{r=1}^n \frac 1{n^2+r^2} \cdot n\tan^{-1} \frac xn \ \bigg|_0^r \\ & = \lim_{n \to \infty} \sum_{r=1}^n \frac {n \tan^{-1} \frac rn}{n^2+r^2} & \small \color{#3D99F6} \text{Dividing up and down by }n^2 \\ & = \lim_{n \to \infty} \frac 1n \sum_{r=1}^n \frac {\tan^{-1} \frac rn}{1+\frac {r^2}{n^2}} & \small \color{#3D99F6} \text{Using Riemann sums again} \\ & = \int_0^1 \frac {\tan^{-1} x}{1+x^2} \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = \left(\tan^{-1} x\right)^2 \ \bigg|_0^1 - \color{#3D99F6} \int_0^1 \frac {\tan^{-1} x}{1+x^2} \ dx & \small \color{#3D99F6} \text{Note that } \int_0^1 \frac {\tan^{-1} x}{1+x^2} \ dx = L \\ & = \frac 12 \left(\tan^{-1} x\right)^2 \ \bigg|_0^1 \\ & = \frac {\pi^2}{32} \end{aligned}

Therefore, γ β α = 3 2 2 1 = 1024 \gamma^{\beta^\alpha} = 32^{2^1} = \boxed{1024} .

Nice solution Sir!!!!!

A Former Brilliant Member - 3 years, 3 months ago

Log in to reply

Glad that you like it. I have amend the problem for you. You can place your mouse cursor over the formulas to see the LaTex codes. You can also click the pull-down menu " \cdots more" under the answer section and select "Toggle LaTex" to see the LaTex codes.

Chew-Seong Cheong - 3 years, 3 months ago

Log in to reply

Thank u Sir!!!

A Former Brilliant Member - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...