limit with variables

Calculus Level 4

If a > 0 a>0 and

lim x 0 x 3 ( b x sin ( x ) ) a + x = 1 \large \lim _{ x\rightarrow 0 }{ \frac { { x }^{ 3 } }{( bx-\sin( x)) \sqrt { a+x } } } =1

Find a + b a+b .


This Question is Part of My Mathematics Set


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 27, 2017

L = lim x 0 x 3 ( b x sin x ) a + x Using Maclaurin’s series = lim x 0 x 3 ( b x ( x x 3 3 ! + x 5 51 x 7 7 ! + ) ) a + x Setting b = 1 = lim x 0 x 3 ( x 3 3 ! x 5 51 + x 7 7 ! ) a + x Dividing up and down by x 3 = lim x 0 1 ( 1 3 ! x 2 51 + x 4 7 ! ) a + x = 1 a 3 ! = 1 \begin{aligned} L & = \lim_{x \to 0} \frac {x^3}{(bx - {\color{#3D99F6}\sin x})\sqrt{a+x}} & \small \color{#3D99F6} \text{Using Maclaurin's series} \\ & = \lim_{x \to 0} \frac {x^3}{\left(bx - {\color{#3D99F6}\left(x - \frac {x^3}{3!}+\frac {x^5}{51}-\frac {x^7}{7!}+\cdots \right)}\right)\sqrt{a+x}} & \small \color{#3D99F6} \text{Setting } b = 1 \\ & = \lim_{x \to 0} \frac {x^3}{\left(\frac {x^3}{3!} - \frac {x^5}{51}+\frac {x^7}{7!}-\cdots \right)\sqrt{a+x}} & \small \color{#3D99F6} \text{Dividing up and down by }x^3 \\ & = \lim_{x \to 0} \frac 1{\left(\frac 1{3!} - \frac {x^2}{51}+\frac {x^4}{7!}-\cdots \right)\sqrt{a+x}} \\ & = \frac 1{\frac {\sqrt a}{3!}} = 1 \end{aligned}

a 3 ! = 1 a = ( 3 ! ) 2 = 36 \implies \dfrac {\sqrt a}{3!} = 1 \implies a = (3!)^2 = 36

Therefore, a + b = 36 + 1 = 37 a+b = 36+1=\boxed{37} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...