limit

Calculus Level 5

lim x 0 ( 1 + x ) 1 x e + 1 2 e x x 2 \large \lim_{x \to 0} \frac {(1+x)^\frac 1x - e + \frac 12 ex}{x^2}

Find the value of the limit above.


The answer is 1.246.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Feb 25, 2019

L = lim x 0 ( 1 + x ) 1 x e + 1 2 e x x 2 A 0/0 case, L’H o ˆ pital’s rule applies = lim x 0 ( 1 x ( 1 + x ) ln ( 1 + x ) x 2 ) ( 1 + x ) 1 x + 1 2 e 2 x Differentiate up and down w.r.t. x = lim x 0 ( 1 x ( 1 x + x 2 ) 1 x 2 ( x x 2 2 + x 3 3 ) ) ( 1 + x ) 1 x + 1 2 e 2 x Using Maclaurin series = lim x 0 ( 1 2 + 2 3 x 3 4 x 2 + ) ( 1 + x ) 1 x + 1 2 e 2 x A 0/0 case again = lim x 0 ( 2 3 3 2 x + 12 5 x 2 ) ( 1 + x ) 1 x + ( 1 x ( 1 + x ) ln ( 1 + x ) x 2 ) 2 ( 1 + x ) 1 x 2 Differentiate up and down w.r.t. x = 2 3 e + 1 4 e 2 = 11 e 24 1.246 \begin{aligned} L & = \lim_{x \to 0} \frac {(1+x)^\frac 1x-e + \frac 12 ex}{x^2} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies} \\ & = \lim_{x \to 0} \frac {\left(\color{#D61F06}\frac 1{x(1+x)} - \frac {\ln(1+x)}{x^2} \right)(1+x)^\frac 1x+ \frac 12 e}{2x} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. } x \\ & = \lim_{x \to 0} \frac {\left(\color{#D61F06}\frac 1x (1-x+x^2-\cdots) - \frac 1{x^2}\left(x - \frac {x^2}2 + \frac {x^3}3 - \cdots \right) \right)(1+x)^\frac 1x+ \frac 12 e}{2x} & \small \color{#D61F06} \text{Using Maclaurin series} \\ & = \lim_{x \to 0} \frac {\left(-\frac 12 + \frac 23 x - \frac 34 x^2 + \cdots \right)(1+x)^\frac 1x+ \frac 12 e}{2x} & \small \color{#3D99F6} \text{A 0/0 case again} \\ & = \lim_{x \to 0} \frac {\left(\frac 23 - \frac 32 x + \frac {12}5 x^2 - \cdots \right)(1+x)^\frac 1x +\left(\frac 1{x(1+x)} - \frac {\ln(1+x)}{x^2} \right)^2(1+x)^\frac 1x}2 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. } x \\ & = \frac {\frac 23 e + \frac 14 e}2 = \frac {11e}{24} \approx \boxed{1.246} \end{aligned}


References:

Sangchul Lee
Mar 21, 2019

If f f is twice differentiable near 0 0 , then by applying L'Hospital's rule twice, lim x 0 e f ( x ) ( 1 + f ( 0 ) x ) e f ( 0 ) x 2 = lim x 0 f ( x ) e f ( x ) f ( 0 ) e f ( 0 ) 2 x = lim x 0 ( f ( x ) + f ( x ) 2 ) e f ( x ) 2 = f ( 0 ) + f ( 0 ) 2 2 e f ( 0 ) . \begin{aligned} \lim_{x \to 0} \frac{e^{f(x)} - (1 + f'(0)x)e^{f(0)}}{x^2} &= \lim_{x \to 0} \frac{f'(x)e^{f(x)} - f'(0)e^{f(0)}}{2x} \\ &= \lim_{x \to 0} \frac{(f''(x) + f'(x)^2)e^{f(x)}}{2} \\ &= \frac{f''(0) + f'(0)^2}{2} e^{f(0)}. \end{aligned} Now plug f ( x ) = log ( 1 + x ) x = 1 1 2 x + 1 3 x 2 + f(x) = \frac{\log(1+x)}{x} = 1 - \frac{1}{2}x + \frac{1}{3}x^2 + \cdots , so that f ( 0 ) = 1 f(0) = 1 , f ( 0 ) = 1 2 f'(0) = -\frac{1}{2} , and f ( 0 ) = 2 3 f''(0) = \frac{2}{3} . Then this limit becomes lim x 0 ( 1 + x ) 1 / x e + x 2 e x 2 = 11 24 e . \lim_{x \to 0} \frac{(1+x)^{1/x} - e + \frac{x}{2}e}{x^2} = \frac{11}{24}e.

Himanshu Goel
Mar 3, 2015

The answer is not 0.458.Answer is 1.246. (1+x)^{1/x}=e[1-x/2+11x^{2}/24 . . . .]

Thanks. I have updated the answer accordingly. Can you edit your solution and explain how you arrived at the result?

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “dot dot dot” menu in the lower right corner. This will notify the problem creator who can fix it the issues.

Calvin Lin Staff - 6 years, 2 months ago
Kislay Raj
Apr 26, 2015

use expansion of ( 1 + x ) ( 1 / x ) (1+x)^(1/x) = e ( 1 ( x / 2 ) + ( 11 x ( 2 ) ) / 24.... e(1-(x/2)+(11x^(2))/24 ....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...