Limited

Calculus Level 1

Evaluate: lim x 0 sin ( 10 x ) sin ( 7 x ) \lim_{ x \to 0} \frac{\sin (10x)}{\sin (7x)}

3 4 22 10/7 454 70 44

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raj Rajput
Jul 27, 2015

We have that

lim x 0 sin ( 10 x ) = 0 lim x 0 sin ( 7 x ) = 0 \displaystyle\lim_{x \to 0} \sin(10x)=0 \land \lim_{x \to 0} \sin(7x)=0

and

lim x 0 sin ( 10 x ) sin ( 7 x ) = lim x 0 10 cos ( 10 x ) 7 cos ( 7 x ) = 10 7 \displaystyle\lim_{x \to 0} \frac{\sin(10x)'}{ \sin(7x)'}=\displaystyle\lim_{x \to 0} \frac{10\cos(10x)}{ 7\cos(7x)}=\displaystyle\frac{10}{7}

So, by L'Hôpital's rule, we have that

lim x 0 sin ( 10 x ) sin ( 7 x ) = lim x 0 sin ( 10 x ) sin ( 7 x ) = 10 7 \displaystyle\lim_{x \to 0} \frac{\sin(10x)}{ \sin(7x)}=\displaystyle\lim_{x \to 0} \frac{\sin(10x)'}{ \sin(7x)'}=\displaystyle\frac{10}{7} .

Nice solution

Aamir Faisal Ansari - 5 years, 10 months ago
Aquilino Madeira
Jul 27, 2015

lim x 0 sin ( 10 x ) sin ( 7 x ) = lim x 0 sin ( 10 x ) x sin ( 7 x ) x = lim x 0 10 × sin ( 10 x ) 10 x 7 × sin ( 7 x ) 7 x = ( 1 ) 10 7 ( 1 ) lim x 0 sin ( a x ) a x = 1 \begin{array}{l} \mathop {\lim }\limits_{x \to 0} \frac{{\sin (10x)}}{{\sin (7x)}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sin (10x)}}{x}}}{{\frac{{\sin (7x)}}{x}}} = \mathop {\lim }\limits_{x \to 0} \frac{{10 \times \frac{{\sin (10x)}}{{10x}}}}{{7 \times \frac{{\sin (7x)}}{{7x}}}}\mathop = \limits_{(1)} \frac{{10}}{7}\\ \\ (1)\quad \mathop {\lim }\limits_{x \to 0} \frac{{\sin (ax)}}{{ax}} = 1 \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...