Limited

Calculus Level 3

lim n a 2 n + n ! ( a + 1 ) n + ( n + 1 ) ! = ? \large\displaystyle\lim_{n\rightarrow \infty}\frac{a^{2n}+n!}{(a+1)^n+(n+1)!}=\ ?

Take a a as a positive real constant.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adrian Castro
Jan 9, 2016

Let e = a 2 e=a^2 and f = a + 1 f=a+1

Then it follows: lim n e n + n ! f n + ( n + 1 ) ! = lim n e n + n ! f n + ( n + 1 ) ! 1 ( n + 1 ) ! 1 ( n + 1 ) ! = lim n e n ( n + 1 ) ! + 1 n + 1 f n ( n + 1 ) ! + 1 \lim_{n\rightarrow{\infty}}\frac{e^n+n!}{f^n+(n+1)!}=\lim_{n\rightarrow{\infty}}\frac{e^n+n!}{f^n+(n+1)!}\cdot\frac{\frac{1}{(n+1)!}}{\frac{1}{(n+1)!}} =\lim_{n\rightarrow{\infty}}\frac{\frac{e^n}{(n+1)!}+\frac{1}{n+1}}{\frac{f^n}{(n+1)!}+1}

Since lim n x n n ! = 0 x ϵ R \lim_{n\rightarrow{\infty}}\frac{x^n}{n!}=0\mid x\epsilon \mathbb{R} our answer is 0 \boxed{0}

That's it :D

Aleksa Radovanović - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...