Limited Proxies

Algebra Level 4

a n = f ( n ) ! a n 1 a n 2 a n 3 a n 4 \large{ a }_{ n }=\frac { f ( n ) ! }{ { a }_{ n-1 }{ a }_{ n-2 }{ a }_{ n-3 }{ a }_{ n-4 } }

The recurrence relation above has the initial condition of a 0 = a 1 = a 2 = a 3 = 1. { a }_{ 0 }={ a }_{ 1 }={ a }_{ 2 }={ a }_{ 3 }=1. If f ( n ) = n 2 f\left( n \right) =n-2 for n 2 n \ge 2 , find the largest value of n n such that a n = f ( n ) . { a }_{ n }=f\left( n \right).


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jul 5, 2016

a n = f ( n ) = n 2 a_n=f(n)=n-2

Hence equation translates to:

n 2 = ( n 2 ) ! ( n 3 ) ( n 4 ) ( n 5 ) ( n 6 ) n-2=\dfrac{(n-2)!}{(n-3)(n-4)(n-5)(n-6)}

n 2 = ( n 2 ) ( n 3 ) ( n 4 ) ( n 5 ) ( n 6 ) ( n 7 ) ! ( n 3 ) ( n 4 ) ( n 5 ) ( n 6 ) \implies \cancel{n-2}=\dfrac{\cancel{(n-2)(n-3)(n-4)(n-5)(n-6)}(n-7)!}{\cancel{(n-3)(n-4)(n-5)(n-6)}}

( n 7 ) ! = 1 \implies (n-7)!=1

This has two solutions n = 7 , 8 n=7,8 larger of which is 8 \boxed{\color{#007fff}{8}}

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 a n 1 1 1 1 2 3 4 5 6 14 24 36 50 66 168 312 504 750 1056 2856 \begin{array} {c} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\ a_n & 1 & 1 & 1 & 1 & 2 & 3 & 4 & 5 & 6 & 14 & 24 & 36 & 50 & 66 & 168 & 312 & 504 & 750 & 1056 & 2856 \end{array}

Observing the terms early in the sequence, we note that a n = ( n 2 ) a n 5 = a n 5 f ( n ) a_n = (n-2)a_{n-5}=a_{n-5}f(n) . Let us prove the claim for all n 5 n \ge 5 by induction. We first note that a 4 = 2 ! 1 1 1 1 = 2 a_4 = \dfrac {2!}{1\cdot 1\cdot1\cdot 1} = 2 .

The proof

  1. For n = 5 n = 5 , as given a 5 = 3 ! 2 1 1 1 = 3 a_5 = \dfrac {3!}{2\cdot 1\cdot1\cdot 1} = 3 . By the claim a 5 = ( 5 2 ) a 0 = 3 a_5 = (5-2)a_0 = 3 . Therefore, the claim is true for n = 5 n = 5 .

  2. Assuming the claim is true for n n , for n + 1 n+1 , we have:

a n + 1 = ( n 1 ) ! a n a n 1 a n 2 a n 3 = ( n 1 ) ( n 2 ) ! a n 4 a n a n 1 a n 2 a n 3 a n 4 = ( n 1 ) a n 4 = ( n + 1 2 ) a n + 1 5 \begin{aligned} \quad \quad a_{n+1} & = \frac {(n-1)!}{a_n a_{n-1} a_{n-2} a_{n-3}} \\ & = \frac {(n-1)(n-2)!a_{n-4}}{a_n a_{n-1} a_{n-2} a_{n-3}a_{n-4}} \\ & = (n-1)a_{n-4} \\ & = (\color{#3D99F6}{n+1}-2)a_{\color{#3D99F6}{n+1}-5}\end{aligned}

\quad Therefore, the claim is true for n + 1 n+1 and hence true for all n 5 n \ge 5 .

Now, we have a n = a n 5 f ( n ) a_n = a_{n-5}f(n) , for a n = f ( n ) a_n = f(n) , a n 5 a_{n-5} must be equal to 1, the latest term is a 3 = 1 a_3=1 , that is n = 8 n=\boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...